Skip to main content
Log in

An admixture of Quercus dentata in the coastal ecotype of Q. mongolica var. crispula in northern Hokkaido and genetic and environmental effects on their traits

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In northern Japan, coastal oak forests consist of Quercus dentata (Qd) on the coastal side and Q. mongolica var. crispula (Qc) on the inland side. In the forests of northern Hokkaido, Qd is rare, and a coastal ecotype of Qc with some Qd-like traits grows on the coastal side. To reveal the genetic background of this ecotype, nuclear microsatellite genotypes in closely related oak taxa were obtained from the Eurasian continent, Sakhalin, and Hokkaido. The clustering of these genotypes suggests an admixture of Qd in the coastal ecotype of Qc. Next, we evaluated the effects of admixture and coastal stress on the leaf and shoot traits of Qc and Qd along coastal–inland gradients in northern Hokkaido. The admixture of Qd in Qc was quantified by the Qd ancestry proportions. Coastal stress causes bud mortality in the upper parts of shoots and was quantified by the survival patterns of buds in shoots. The genetic and environmental effects on the traits at Qd-abundant and Qd-rare sites were estimated using linear mixed models. The genetic effect was detected in all traits. Both genetic and environmental effects were detected in most traits. Some traits differed between Qd-abundant and Qd-rare sites in addition to these effects, indicating more Qd-like traits at Qd-rare sites. The findings suggest that an admixture of Qd characterizes the genetic background of the coastal ecotype of Qc and that not only the coastal stress but also the genetic background is responsible for the leaf and shoot traits of Qc and Qd in northern Hokkaido.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizawa M, Maekawa K, Mochizuki H et al (2018) Unveiling the origin of Quercus serrata subsp. mongolicoides found in Honshu, Japan, by using genetic and morphological analyses. Plant Species Biol 33:174–190. https://doi.org/10.1111/1442-1984.12207

    Article  Google Scholar 

  • Asai T, Shinmura Y, Usui G (1986) Mortality factors of the winter buds of Quercus dentata and Quercus mongolica var. grosseserrata in natural coastal forests of northern Hokkaido. J Jpn For Soc 68:368–374

    Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128. https://doi.org/10.1890/0012-9658(2003)084[1115:ppaiap]2.0.co;2

    Article  Google Scholar 

  • Ciccarelli D (2015) Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession? Estuar Coast Shelf Sci 165:247–253. https://doi.org/10.1016/j.ecss.2015.05.023

    Article  Google Scholar 

  • De Boeck P, Bakker M, Zwitser R et al (2011) The estimation of item response models with the lmer function from the lme4 package in R. J Stat Softw 39:1–28. https://doi.org/10.18637/jss.v039.i12

    Article  Google Scholar 

  • Doing H (1985) Coastal fore-dune zonation and succession in various parts of the world. Vegetatio 61:65–75. https://doi.org/10.1007/BF00039811

    Article  Google Scholar 

  • Eaton DAR, Hipp AL, González-Rodríguez A, Cavender-Bares J (2015) Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 69:2587–2601. https://doi.org/10.1111/evo.12758

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goulet BE, Roda F, Hopkins R (2017) Hybridization in plants: Old ideas, new techniques. Plant Physiol. https://doi.org/10.1104/pp.16.01340

    Article  PubMed  Google Scholar 

  • Grime JP, Mackey JML (2002) The role of plasticity in resource capture by plants. Evol Ecol 16:299–307. https://doi.org/10.1023/A:1019640813676

    Article  Google Scholar 

  • Hasegawa S (1984) Basic studies on the conservation of the natural coastal forests in Hokkaido: The structure and regeneration of Quercus dentata Thunb. forest in Ishikari. Res Bull Hokkaido Univ For 41:313–422

    Google Scholar 

  • Hiroki S (2017) A new scientific name proposed for a unique deciduous Quercus in Chubu and Kanto districts, Japan. J Phytogeogr Taxon 64:73–76

    Google Scholar 

  • Ishida TA, Hattori K, Sato H, Kimura MT (2003) Differentiation and hybridization between Quercus crispula and Q. dentata (Fagaceae): Insights from morphological traits, amplified fragment length polymorphism markers, and leafminer composition. Am J Bot 90:769–776. https://doi.org/10.3732/ajb.90.5.769

    Article  PubMed  Google Scholar 

  • Ito M (2009) Variation in leaf morphology of Quercus crispula and Quercus dentata assemblages among contact zones: a method for detection of probable hybridization. J For Res 14:240–244. https://doi.org/10.1007/s10310-009-0121-0

    Article  Google Scholar 

  • Kadomatsu M (1997) Differences in phenology of Quercus collected from northeast China, eastern Hokkaido and western Honshu. Res Bull Hokkaido Univ For 54:188–201

    CAS  Google Scholar 

  • Kanazashi A, Kanazashi T (2009) Quercus mongolica Fischer ex Ledeb. var. crispula (Blume) Ohashi. In: Suzuki W, Ohsumi K, Yamanaka N (eds) Silvics of Japan, vol 1. Japan Forestry Investigation Committee, Tokyo, pp 635–667

    Google Scholar 

  • Kanno M, Yokoyama J, Suyama Y et al (2004) Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. J Plant Res 117:311–317. https://doi.org/10.1007/s10265-004-0160-8

    Article  PubMed  Google Scholar 

  • Khodwekar S, Gailing O (2017) Evidence for environment-dependent introgression of adaptive genes between two red oak species with different drought adaptations. Am J Bot 104:1088–1098. https://doi.org/10.3732/ajb.1700060

    Article  PubMed  Google Scholar 

  • Kitamura K, Namikawa K, Kawahara T et al (2017) Genetic structure of remnant Quercus serrata populations at the northernmost limit of their distribution in Japan. Acta Phytotaxon Geobot 68:1–15

    Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: Recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012. https://doi.org/10.1111/j.1365-294X.2006.02896.x

    Article  CAS  PubMed  Google Scholar 

  • Liu H-Z, Harada K (2014) Geographic distribution and origin of the chloroplast T/C-type in Quercus mongolica var. crispula in northeastern Japan. Plant Species Biol 29:207–211

    Article  Google Scholar 

  • Matsumoto A, Kawahara T, Kanazashi A et al (2009) Differentiation of three closely related Japanese oak species and detection of interspecific hybrids using AFLP markers. Botany 87:145–153. https://doi.org/10.1139/B08-121

    Article  CAS  Google Scholar 

  • McVay JD, Hipp AL, Manos PS (2017) A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc R Soc B Biol Sci 284:20170300. https://doi.org/10.1098/rspb.2017.0300

    Article  CAS  Google Scholar 

  • Mishima K, Watanabe A, Isoda K et al (2006) Isolation and characterization of microsatellite loci from Quercus mongolica var. crispula. Mol Ecol Notes 6:695–697. https://doi.org/10.1111/j.1471-8286.2006.01313.x

    Article  CAS  Google Scholar 

  • Miyabe K, Kudo Y (1925) Icones of the essential forest trees of Hokkaido, vol II. XII). Hokkaido Government, Sapporo

    Google Scholar 

  • Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561. https://doi.org/10.1111/j.1365-294X.2004.02418.x

    Article  CAS  PubMed  Google Scholar 

  • Nagasaka Y, Kikuchi K, Yamazaki Y (1991) Growth pattern of natural coastal forest in North-Hokkaido: The structure of Quercus dentata forest in Teshio. Trans Hokkaido Branch Jpn For Soc 39:153–155

    Google Scholar 

  • Ohashi H (1988) The new name instead of Quercus mongolica Fisch. var. grosseserrata (Bl.) Rehd. Wilis. (Fagaceae). J Jpn Bot 63:13–14

    Google Scholar 

  • Ohba H (2006) Fagaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan. Volume IIa. Kodansha, Tokyo, pp 42–60

    Google Scholar 

  • Ohsawa T, Tsuda Y, Saito Y, Ide Y (2011) The genetic structure of Quercus crispula in northeastern Japan as revealed by nuclear simple sequence repeat loci. J Plant Res 124:645–654. https://doi.org/10.1007/s10265-010-0402-x

    Article  PubMed  Google Scholar 

  • Okaura T, Quang ND, Ubukata M, Harada K (2007) Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes Genet Syst 82:465–477. https://doi.org/10.1266/ggs.82.465

    Article  CAS  PubMed  Google Scholar 

  • Ortego J, Gugger PF, Sork VL (2018) Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus). New Phytol 218:804–818. https://doi.org/10.1111/nph.14951

    Article  PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:2074–2093. https://doi.org/10.1371/journal.pgen.0020190

    Article  CAS  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A et al (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164. https://doi.org/10.1046/j.1469-8137.2003.00944.x

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010) Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol 30:618–627. https://doi.org/10.1093/treephys/tpq013

    Article  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Shimizu H (1997) Effects of geomorphological evolution on distribution of Quercus around the Sarobetsu peatland. Trans Hokkaido Branch Jpn For Soc 45:41–44

    Google Scholar 

  • Shimizu H, Nagasaka Y, Yamazaki Y (1992) Local variation of bud number on current shoot of Quercus in North-Hokkaido. Trans Hokkaido Branch Jpn For Soc 40:220–222

    Google Scholar 

  • Shimizu H, Kikuchi K, Yamada K (1994) Relationship between number of axillary buds of bud-scales and salt-spray resistance Quercus mongolica var. grosseserrata. Trans Hokkaido Branch Jpn For Soc 42:171–173

    Google Scholar 

  • Shimizu H, Kikuchi K, Yamada K (1995) Local variation of bud number on axillary buds of bud-scales of Quercus dentata in coastal forest along Japan sea of Hokkaido. Trans Hokkaido Branch Jpn For Soc 43:140–142

    Google Scholar 

  • Shinmura Y, Asai T, Usui G (1990) The relationships between environment and budbursting patterns of Quercus dentata and Quercus mongolica var. grosseserrata in natural coastal forests of northern Hokkaido. J Jpn For Soc 72:478–487

    Google Scholar 

  • Ubukata M (2009) Quercus dentata Thunb. In: Suzuki W, Ohsumi K, Yamanaka N (eds) Silvics of Japan, vol 1. Japan Forestry Investigation Committee, Tokyo, pp 195–213

    Google Scholar 

  • Ubukata M, Kohno K, Iizuka K (1996) Morphological characteristics of Quercus crispula × dentata hybrids. Trans Hokkaido Branch Jpn For Soc 44:113–116

    Google Scholar 

  • Ubukata M, Itahana N, Kohno K (1999) Cross-compatibility between Quercus mongolica var. grosseserrata and Quercus dentata and both the reproductive ability and flowering time of their interspecific hybrids. J Jpn For Soc 81:286–290

    Google Scholar 

  • Ueno S, Tsumura Y (2008) Development of ten microsatellite markers for Quercus mongolica var. crispula by database mining. Conserv Genet 9:1083–1085. https://doi.org/10.1007/s10592-007-9462-4

    Article  CAS  Google Scholar 

  • Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet Syst 83:179–187. https://doi.org/10.1266/ggs.83.179

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Aoki K, Tsumura Y (2009a) Generation of expressed sequence tags and development of microsatellite markers for Castanopsis sieboldii var. sieboldii (Fagaceae). Ann For Sci 66:509

    Article  Google Scholar 

  • Ueno S, Taguchi Y, Tomaru N, Tsumura Y (2009b) Development of EST-SSR markers from an inner bark cDNA library of Fagus crenata (Fagaceae). Conserv Genet 10:1477–1485. https://doi.org/10.1007/s10592-008-9764-1

    Article  CAS  Google Scholar 

  • Usui G, Shimizu H, Shinmura Y, Asai T (1988) A transformation model of asymmetric canopies of coastal forests. J Jpn For Soc 70:309–314

    Google Scholar 

  • Valladares F, Gialoni E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Yokoi S (2009) Quercus serrata Thunb. In: Suzuki W, Ohsumi N, Yamanaka N (eds) Silvics of Japan, vol 1. Japan Forestry Investigation Committee, Tokyo, pp 287–341

    Google Scholar 

Download references

Acknowledgements

We thank the towns of Obira and Omu, as well as the Hokkaido Regional Forest Offices and the Soya and Kitami District Forest Offices, for their permission to collect samples; Ko Harada and Keiko Kitamura for providing DNA samples; Akiko Takazawa for her assistance in the laboratory work; Hiroki Itoh for his advice regarding statistical analyses; and Oliver Gailing, Ichiro Tamaki, and Kentaro Uchiyama for their suggestions for improving the manuscript. This study was supported by JSPS KAKENHI Grant Number 17K07859 to TN and Research Grant Number 201610 of the Forestry and Forest Products Research Institute to AN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyoshi Nagamitsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1553 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamitsu, T., Shimizu, H., Aizawa, M. et al. An admixture of Quercus dentata in the coastal ecotype of Q. mongolica var. crispula in northern Hokkaido and genetic and environmental effects on their traits. J Plant Res 132, 211–222 (2019). https://doi.org/10.1007/s10265-018-01079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-018-01079-2

Keywords

Navigation