Skip to main content
Log in

Historical review of research on plant cell dedifferentiation

  • JPR Symposium
  • Reprogramming of plant cells as adaptive strategies
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Plant cell dedifferentiation has long attracted interest as a key process for understanding the plasticity of plant development. In early studies, typical examples of plant cell dedifferentiation were described as physiological and cytological changes associated with wound healing or regenerative development. Subsequently, plant tissue and cell culture techniques, in which exciting progress was achieved after discovery of the hormonal control of cell proliferation and organogenesis in vitro in the 1950s, have been used extensively to study dedifferentiation. The pioneer studies of plant tissue/cell culture led to the hypothesis that many mature plant cells retain totipotency and related dedifferentiation to the initial step of the expression of totipotency. Plant tissue/cell cultures have provided experimental systems not only for physiological analysis, but also for genetic and molecular biological analysis, of dedifferentiation. More recently, proteomic, transcriptomic, and epigenetic analyses have been applied to the study of plant cell dedifferentiation. All of these works have expanded our knowledge of plant cell dedifferentiation, and current research is contributing to unraveling the molecular mechanisms. The present article provides a brief overview of the history of research on plant cell dedifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, Köhler C (2009) CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 5:e1000605

    PubMed Central  PubMed  Google Scholar 

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    CAS  PubMed  Google Scholar 

  • Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Müllner AE, Luschnig C (2010) Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci USA 107:10308–10313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S (2011) Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA 108:16128–16132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dynam 230:12–22

    CAS  Google Scholar 

  • Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60

    Google Scholar 

  • Blackman FF, Matthaei GLC (1901) On the reaction of leaves to traumatic stimulation. Ann Bot 15:533–546

    Google Scholar 

  • Bloch R (1926) Umdifferenzierungen an Wurzelgeweben nach Verwundung. Ber Deut Bot Ges 44:308–316

    Google Scholar 

  • Bloch R (1935) Wound healing in Tradescantia fluminensis Vell. Ann Bot 49:651–670

    CAS  Google Scholar 

  • Bloch R (1941) Wound healing in higher plants. Bot Rev 7:110–146

    Google Scholar 

  • Bloch R (1952) Wound healing in higher plants II. Bot Rev 18:655–679

    Google Scholar 

  • Bolibok H, Rakoczy-Trojanowska M (2006) Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149:73–83

    CAS  Google Scholar 

  • Bonner J, English J Jr (1938) A chemical and physiological study of traumatin, a plant wound hormone. Plant Physiol 13:331–348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonnett HT Jr, Torrey JG (1965) Chemical control of organ formation in root segments of Convolvulus cultured in vitro. Plant Physiol 40:1228–1236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou J-P, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buvat R (1989) Ontogeny, cell differentiation, and structure of vascular plants. Springer, Heidelberg

    Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Child CM (1912) The process of reproduction in organisms. Biol Bull 23:1–39

    Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7:1473–15000

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Tan F, Mujahid H, Magee BG, Bridges SM, Peng Z (2008) Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics 8:4303–4316

    CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112:494–497

    CAS  Google Scholar 

  • Chupeau M-C, Granier F, Pichon O, Renou J-P, Gaudin V, Chupeau Y (2013) Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell 25:2444–2463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963

    Google Scholar 

  • Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuv Res 12:435–443

    CAS  Google Scholar 

  • De Klerk G-J, Arnholdt-Schmitt B, Lieberei R, Neumann K-H (1997) Regeneration of roots, shoots and embryos: physiological, biochemical an molecular aspects. Biol Plant 39:53–66

    Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    PubMed Central  PubMed  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    CAS  PubMed  Google Scholar 

  • Dudits D, Györgyey J, Bögre L, Bakó (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 267–308

    Google Scholar 

  • English J Jr, Bonner J, Haagen-Smit AJ (1939) The wound hormones of plants. IV. Structure and synthesis of a traumatin. J Am Chem Soc 61:3434–3436

    CAS  Google Scholar 

  • Engvild KC (1973) Shoot differentiation in callus cultures of Datura innoxia. Physiol Plant 28:155–159

    CAS  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult 74:201–228

    Google Scholar 

  • Feldman LJ, Torrey JG (1977) Nuclear changes associated with cellular dedifferentiation in pea root cortical cells cultured in vitro. J Cell Sci 28:87–105

    CAS  PubMed  Google Scholar 

  • Fischer H (1934) Grössenänderungen von Kern und Nucleolus im Blattgewebe. Planta 22:767–793

    Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda H, Komamine A (1981) Relationship between tracheary element differentiation and the cell cycle in single cells isolated from the mesophyll of Zinnia elegans. Physiol Plant 52:423–430

    Google Scholar 

  • Galun E (1981) Plant protoplasts as physiological tools. Annu Rev Plant Physiol 32:237–266

    CAS  Google Scholar 

  • Gautheret RJ (1939) Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carotte. CR Acad Sci 208:118–120

    Google Scholar 

  • Gautheret RJ (1983) Plant tissue culture: a history. Bot Mag Tokyo 96:393–410

    Google Scholar 

  • Grafi G (2004) How cells dedifferentiate: a lesson from plants. Dev Biol 268:1–6

    CAS  PubMed  Google Scholar 

  • Grafi G, Barak S (2014) Stress induces cell dedifferentiation in plants. BBA-Gene Regul Mech in press. doi:10.1016/j.bbagrm.2014.07.015

  • Grafi G, Ben-Meir H, Avivi Y, Moshe M, Dahan Y, Zemach A (2007) Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Dev Biol 306:838–846

    CAS  PubMed  Google Scholar 

  • Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation. Planta 233:433–438

    CAS  PubMed  Google Scholar 

  • Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wissensch Wien Math-Naturw K1(111):69–92

    Google Scholar 

  • Haberlandt G (1921) Wundhormone als Erreger von Zellteilungen. Beitr Allg Bot 2:1–53

    Google Scholar 

  • Harada H, Kiyosue T, Kamada H, Kobayashi K (1990) Stress-induced carrot somatic embryos and their applicability to synthetic seed. In: Sangwan RS, Sangwan-Norreel BS (eds) The impact of biotechnology in agriculture. Klwer Academic Publishers, Dordrecht, pp 129–157

    Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heitz E (1925) Das Verhalten von Kern und Chloroplasten bei der Regeneration. Z Zellforsch Mik Ana 2:69–86

    Google Scholar 

  • Hemerly AS, Ferreira P, Engler JA, Montagu MV, Engler G, Inzé D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711–1723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henry Y, Vain P, De Buyser J (1994) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79:45–58

    Google Scholar 

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation. Curr Biol 21:506–514

    Google Scholar 

  • Jiang F, Zhu J, Liu H-L (2013) Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250:1231–1238

    CAS  PubMed  Google Scholar 

  • Jordan EG, Hide P, Phillips R (1987) Patterns of nuclear and nucleolar growth in synchronously dividing explants from tubers of Helianthus tuberosus L. Ann Bot 59:525–532

    Google Scholar 

  • Kao KN, Keller WA, Miller RA (1970) Cell division in newly formed cells from protoplasts of soybean. Exp Cell Res 62:338–340

    CAS  PubMed  Google Scholar 

  • Komamine A, Kawahara R, Matsumoto M, Sunabori S, Toya T, Fujiwara A, Tsukahara M, Smith J, Ito M, Fukuda H, Nomura K, Fujimura T (1992) Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol-Plant 28:11–14

    Google Scholar 

  • Komatsuda T, Annaka T, Oka S (1993) Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet 86:713–720

    CAS  PubMed  Google Scholar 

  • Konishi M, Sugiyama M (2003) Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647

    CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, Martinelli L (1987) A genetic analysis of cell culture traits in tomato. Theor Appl Gent 74:633–641

    CAS  Google Scholar 

  • Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R, Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J 3:131–141

    CAS  Google Scholar 

  • Kostoff D (1928) Studies on callus tissue. Am J Bot 15:565–576

    Google Scholar 

  • Liu H-I, Wang G-C, Feng Z, Zhu J (2010) Screening of genes associated with dedifferentiation and effect of LBD29 on pericycle cells in Arabidopsis thaliana. Plant Growth Regul 62:127–136

    CAS  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KAT, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    CAS  PubMed  Google Scholar 

  • Mano Y, Komatsuda T (2002) Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor Appl Genet 105:708–715

    CAS  PubMed  Google Scholar 

  • Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breed Sci 46:137–142

    CAS  Google Scholar 

  • Martinez MC, Jørgensen J-E, Lawton MA, Lamb CJ, Doerner PW (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci USA 89:7360–7364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Melchers G, Sacristán MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Commun 43:203–218

    Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    CAS  Google Scholar 

  • Miller CO, Skoog F, Okumura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380

    CAS  Google Scholar 

  • Motte H, Vercauteren A, Depuydt S, Landschoot S, Geelen D, Werbrouck S, Goormachtig S, Vuylsteke M, Vereecke D (2014) Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc Natl Acad Sci USA 111:8305–8310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagata T (1985) Plating of isolated tobacco mesophyll protoplasts on agar medium. CC/Agr Biol Environ 9:18

    Google Scholar 

  • Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    CAS  PubMed  Google Scholar 

  • Nagata T, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20

    CAS  PubMed  Google Scholar 

  • Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Organ Cult 90:1–8

    CAS  Google Scholar 

  • Neelakandan AK, Wang K (2011) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    PubMed  Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940–11944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishiyama T, Miyawaki K, Ohshima M, Thompson K, Nagashima A, Hasebe M, Kurata T (2012) Digital gene expression profiling by 5′-end sequencing of cDNAs during reprogramming in the moss Physcomitrella patens. PLoS ONE 7:e36471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. CR Soc Biol 130:1270–1271

    Google Scholar 

  • Ogas J, Cheng J-C, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    CAS  PubMed  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohbayashi I, Konishi M, Ebine K, Sugiyama M (2011) Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. Plant J 67:49–60

    CAS  PubMed  Google Scholar 

  • Ohtani M, Sugiyama M (2005) Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant J 43:479–490

    CAS  PubMed  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2013) Arabidopsis ROOT INITIATION DEFECTIVE1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell 25:2056–2069

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ondřej V, Kitner M, Doležalová I, Nádvorník P, Navrátilová B, Lebeda A (2009) Chromatin structural rearrangement during dedifferentiation of protoplasts of Cucumis sativus L. Mol Cell 27:443–447

    Google Scholar 

  • Ozawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    CAS  PubMed  Google Scholar 

  • Ramagopal S (1989) Barley proteins associated with tissue dedifferentiation. J Plant Physiol 134:395–405

    CAS  Google Scholar 

  • Ramagopal S (1994) Protein variation accompanies leaf dedifferentiation in sugarcane (Saccharum officinarum) and is influenced by genotype. Plant Cell Rep 13:692–696

    CAS  PubMed  Google Scholar 

  • Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M (2014) Chromatin meets the cell cycle. J Exp Bot 65:2677–2689

    CAS  PubMed  Google Scholar 

  • Reinert J (1959) Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 53:318–333

    Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    CAS  PubMed  Google Scholar 

  • Sachs J (1887) Lectures on the physiology of plants. In: Ward HM (ed) Trans. Clarendon Press, Oxford

    Google Scholar 

  • Sakakibara K, Reisewitz P, Aoyama T, Friedrich T, Ando S, Sato Y, Tamada Y, Nishiyama T, Hiwatashi Y, Kurata T, Ishikawa M, Deguchi H, Rensing SA, Werr W, Murata T, Hasebe M, Laux T (2014) WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development 141:1660–1670

    CAS  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Schraudolf H, Reinert J (1959) Interaction of plant growth regulators in regeneration processes. Nature 184:465–466

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Soni R, Carmichael JP, Shah ZH, Murray JAH (1995) A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7:85–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21:212–218

    CAS  PubMed  Google Scholar 

  • Sugiyama M (2000) Genetic analysis of plant morphogenesis in vitro. Int Rev Cytol 196:67–84

    CAS  PubMed  Google Scholar 

  • Sugiyama M (2014) Molecular genetic analysis of organogenesis in vitro with temperature-sensitive mutants. Plant Biotechnol Rep 8:29–35

    Google Scholar 

  • Sugiyama M, Komamine A (1990) Transdifferentiation of quiescent paranchymatous cells into tracheary elements. Cell Diff Dev 31:77–87

    CAS  Google Scholar 

  • Taguchi-Shiobara F, Lin SY, Tanno K, Komatsuda T, Yano M, Sasaki T, Oka S (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet 95:828–833

    CAS  Google Scholar 

  • Takahashi Y, Nagata T (1992a) parB: an auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci USA 89:56–59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi Y, Nagata T (1992b) Differential expression of an aauxin-regulated gene, parC, and a novel related gene, C-7, from tobacco mesophyll protoplasts in response to external stimuli and in plant tissues. Plant Cell Physiol 33:779–787

    CAS  Google Scholar 

  • Takahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T (1989) Isolation of an auxin-regulated gene cDNA expressed during G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86:9279–9283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Google Scholar 

  • Takeuchi Y, Abe T, Sasahara T (2000) RFLP mapping of QTLs influencing shoot regeneration from mature seed-derived calli in rice. Crop Sci 40:245–247

    CAS  Google Scholar 

  • Tessadori F, Chupeau M-C, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208

    CAS  PubMed  Google Scholar 

  • Thomé OW (1879) Text-book of structural and physiological botany. In: Bennett AW (ed) Trans, 3rd edn. Longmans, Green and Co., London

    Google Scholar 

  • Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer Academic Publishers, Dordrecht, pp 279–336

    Google Scholar 

  • Tschirch A (1889) Angewandte Pflanzenanatomie, V1. Urban and Schwarzenberg, Vienna

    Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892

    CAS  PubMed  Google Scholar 

  • White PR (1936) Plant tissue cultures. Bot Rev 2:419–437

    Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Google Scholar 

  • White PR (1946) Plant tissue cultures II. Bot Rev 12:521–529

    CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinate behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dynam 228:113–120

    CAS  Google Scholar 

  • Wolter KE (1968) Root and shoot initiation in aspen callus cultures. Nature 219:509–510

    CAS  PubMed  Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33

    PubMed  Google Scholar 

  • Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C (2012) A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100:116–124

    CAS  PubMed  Google Scholar 

  • Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells. J Biol Chem 276:22772–22778

    CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed Central  PubMed  Google Scholar 

  • Zimmerman DC, Coudron CA (1979) Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol 63:536–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetaka Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, M. Historical review of research on plant cell dedifferentiation. J Plant Res 128, 349–359 (2015). https://doi.org/10.1007/s10265-015-0706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0706-y

Keywords

Navigation