Skip to main content

Advertisement

Log in

Mangrove root: adaptations and ecological importance

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This review gives a comprehensive overview of adaptations of mangrove root system to the adverse environmental conditions and summarizes the ecological importance of mangrove root to the ecosystem.

Abstract

In plants, the first line of defense against abiotic stress is in their roots. If the soil surrounding the plant root is healthy and biologically diverse, the plant will have a higher chance to survive in stressful conditions. Different plant species have unique adaptations when exposed to a variety of abiotic stress conditions. None of the responses are identical, even though plants have become adapted to the exact same environment. Mangrove plants have developed complex morphological, anatomical, physiological, and molecular adaptations allowing survival and success in their high-stress habitat. This review briefly depicts adaptive strategies of mangrove roots with respect to anatomy, physiology, biochemistry and also the major advances recently made at the genetic and genomic levels. Results drawn from the different studies on mangrove roots have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. We also review crucial ecological contributions provided by mangrove root communities to the ecosystem including marine fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ Pollut 155:320–326

    Article  CAS  PubMed  Google Scholar 

  • Allaway WG, Curran M, Hollington LM, Ricketts MC, Skelton NJ (2001) Gas space and oxygen exchange in roots of Avicinia marina (Forssk.) Vierh. Var. australiasia (Walp.) Moldenke ex N.C. Duke, the grey mangrove. Wetland Ecol Manag 9:211–218

    Article  Google Scholar 

  • Alongi DM (2005) Mangrove-microbe-soil relations. In: Kristensen E, Haese RR, Kostka JE (eds) Macro- and microorganisms in marine sediments. American Geophysical Union, Washington, pp 85–103

    Google Scholar 

  • Alongi DM (2009) The energetics of mangrove forests. Springer, New York

    Google Scholar 

  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874

    Article  CAS  PubMed  Google Scholar 

  • Arens NC (1997) Responses of leaf anatomy to light environment in the tree fern Cyatheaca racasana (Cyatheaceae) and its application to some ancient seed ferns. Palaios 12:84–94

    Article  Google Scholar 

  • Armstrong W (1978) Plant aeration in the wetland condition. In: Hook DD, Crawford RMM (eds) Anaerobiosis and plant adaptations. Ann Arbor Pub Inc, Michigan, pp 269–297

    Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged. A multi shelled mathematical modal combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105:221–245

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1988) Phragmites australis: a preliminary study of soil-oxidising sites and internal gas transport pathways. New Phytol 108:373–382

    Article  Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees Struct Funct 2:129–142

    Article  Google Scholar 

  • Ball MC, Passioura JB (1995) Carbon gain in relation to water use: photosynthesis in mangroves. In: Schulze ED, Caldwell NM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 247–257

    Chapter  Google Scholar 

  • Ball MC, Pidsley SM (1995) Growth response to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata. Funct Ecol 9:77–85

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2001) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, London. ISBN 0-12-080260-0

    Google Scholar 

  • Basyuni M, Baba S, Inafuku M, Iwasaki H, Kinjo K, Oku H (2009) Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J Plant Physiol 166:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Basyuni M, Kinjo Y, Baba S, Shinzato N, Iwasaki H, Siregar EBM, Oku H (2011) Isolation of salinity tolerance genes from roots of mangrove plant, Rhizophora stylosa Griff., using PCR-based suppression subtractive hybridization. Plant Mol Biol Rep 29:533–543

    Article  Google Scholar 

  • Bayas JCL, Marohn C, Dercon G, Dewi S, Piepho PH, Joshi L, Noordwijk M, Cadisch G (2011) Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh. PNAS 108:18612–18617

    Article  CAS  Google Scholar 

  • Bazzi AO (2014) Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. J Oceanogr Mar Sci 5:20–29

    Article  Google Scholar 

  • Briggs SV (1977) Estimates of biomass in a temperate mangrove community. J Aust Ecol 2:369–373

    Article  Google Scholar 

  • Bruna CR, Fabiana ZB, Alex-Alan FA (2012) Regulation of gene expression in response to abiotic stress in plants. In: Bubulya P (ed) Cell metabolism—cell homeostasis and stress response, InTech. ISBN: 978-953-307-978-3. doi:10.5772/26636

  • Burchett MD, Clarke CJ, Field CD, Pulkownik A (1989) Growth and respiration in two mangrove species at a range of salinities. Plant Physiol 75:299–303

    Article  Google Scholar 

  • Chalermchatwilai B, Poungparn S, Patanaponpaiboon P (2011) Distribution of fine-root necromass in a secondary mangrove forest in Trat province, Eastern Thailand. Sci Asia 37:1–5

    Article  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xiao Q, Wu F, Dong X, He J et al (2010) Nitric oxide enhances salts secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1586

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiong DY, Wang WH, Hu WJ, Simon M (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+antiporter under high salinity. PLoS One 8(8):e71543. doi:10.1371/journal.pone.0071543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Liu Y, Tam NFY, Wang X, Li SY, Chen GZ, Ye ZH (2010) The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environ Pollut 158:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Jiang ZY, Liu Y, Ye ZH, Wu ML, Sun CC, Sun FL, Fei J, Wang YS (2014) Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization. Tree Physiol 34:646–656

    Article  CAS  PubMed  Google Scholar 

  • Chomicki G, Bidel LPR, Baker WJ, Jay-Allemand C (2014) Palm snorkelling: leaf bases as aeration structures in the mangrove palm (Nypa fruticans). Bot J Linn Soc 174:257–270

    Article  Google Scholar 

  • Clair B, Fournier M, Oise Prevost MF, Beauchene J, Bardet S (2003) Biomechanics of buttressed trees: bending strains and stresses. Am J Bot 90:1349–1356

    Article  PubMed  Google Scholar 

  • Clough BF (1984) Growth and salt balance of the mangroves Avicennia germinans (Forsk.) Vierh. And Rhizophora stylosa Griff. in relation to salinity. Aust J Plant Physiol 11:419–430

    Article  CAS  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD, Greenway H (2011) Iron transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Pedersen O (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Cox MCH, Voesenk LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778

    Article  CAS  PubMed  Google Scholar 

  • Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot 48:1703–1716

    Article  CAS  Google Scholar 

  • Curran M, Cole M, Allaway WG (1986) Root aeration and respiration in young mangrove plants (Avicennia marina (Forsk) Vierh). J Exp Bot 37:1225–1233

    Article  Google Scholar 

  • Curran M, James P, Allaway WG (1996) The measurement of gas spaces in the roots of aquatic plants: Archimedes revisited. Aquat Bot 54:255–261

    Article  Google Scholar 

  • Dahdouh-Guebas F, Hettiarachchi S, Lo Seen D, Batelaan O, Sooriyarachchi S, Jayatissa LP, Koedam N (2005) Transitions in ancient inland freshwater resource management in Sri Lanka affect biota and human populations in and around coastal lagoons. Curr Biol 15:579–586

    Article  CAS  PubMed  Google Scholar 

  • Danielsen F, Sorensen MK, Olwig MF, Selvam V, Parish F et al (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643

    Article  CAS  PubMed  Google Scholar 

  • Day DS, Wiseman EP, Dickinson SB, Harris JR (2010) Contemporary concepts of root system architecture of urban trees. Arboric Urban For 36:149–159

    Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    Article  CAS  PubMed  Google Scholar 

  • Downton WJS (1982) Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Aust J Plant Physiol 9:519–528

    Article  CAS  Google Scholar 

  • Dromgoole FI (1988) Carbon dioxide fixation in aerial roots of the New Zealand mangrove Avicennia marina var resinifera. NZ J Mar Freshw Res 22:617–619

    Article  Google Scholar 

  • Duke NC (2011) Mangroves. Structure, form and process. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Dordrecht, pp 655–663

    Chapter  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into factors affecting the anchorage of roots in tension. Eur J Soil Sci 56:319–327

    Article  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorrhiza using Agrobacterium functional screening. Plant Sci 176:272–278

    Article  CAS  Google Scholar 

  • FAO (2003) Status and trends in mangrove area extent worldwide. Forest resources assessment working paper 63. Forest Resources Division, Rome. http://www.fao.org/docrep/007/j1533e/J1533E00.htm. Accessed 28 Jan 2010

  • Gilber AJ, Janssen R (1998) Use of environmental functions to communicate the values of a mangrove ecosystem under different management regimes. Ecol Econom 25:323–346

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gomes NCM, Flocco CG, Costa R, Junca H et al (2010) Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 74:276–290

    Article  CAS  PubMed  Google Scholar 

  • Hajibagheri MA, Yeo AR, Flowers TJ (1985) Salt tolerance in Suaeda maritima (L.) Dum.: fine structure and ion concentrations in the apical region of roots. New Phytol 99:331–343

    Article  Google Scholar 

  • Hamilton LS, Snedaker SC (eds) (1984) Handbook for mangrove area management. UNEP and East West Center, Environment and Policy Institute, Honolulu, p 126

    Google Scholar 

  • Harada K, Imamura F, Hiraishi T (2002) Experimental study on the effect in reducing tsunami by the coastal permeable structures. In: Final proceedings of international offshore polar engineering conference, USA, pp 652–658

  • He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996) Ethylene biosynthesis during aerenchyma formation in roots of Zea mays subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Oxford University Press, New York. ISBN 0-19-850222-2

    Google Scholar 

  • Hwang YH, Chen SC (1995a) Salt tolerance in seedlings of the mangrove Kandelia candel (L.) Druce, Rhizophoraceae. Bot Bull Acad Sin 36:25–31

    CAS  Google Scholar 

  • Hwang YH, Chen SC (1995b) Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Bot Bull Acad Sin 36:181–188

    CAS  Google Scholar 

  • Kathiresan K (2012) Importance of mangrove ecosystem. Int J Mar Sci 2:70–89

    Google Scholar 

  • Keshavarz M, Mohammadikia D, Gharibpour F, Dabbagh A-R (2012) Accumulation of heavy metals (Pb, Cd, V) in sediment, roots and leaves of mangrove species in Sirik Creek along the sea coasts of Oman, Iran. J Appl Sci Environ Manag 16:323–326

    CAS  Google Scholar 

  • Komiyama A (2014) Conservation of mangrove ecosystems through the eyes of a production ecologist. Rev Agric Sci 2:11–20. doi:10.7831/ras.2.11

    Google Scholar 

  • Komiyama A, JintanaV SangtieanT, Kato S (2002) A common allometric equation for predicting stem weight of mangroves growing in secondary forests. Ecol Res 17:415–418. doi:10.1046/j.1440-1703.2002.00500.x

    Article  Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass and productivity of mangrove forests: a review. Aquat Bot 89:128–137

    Article  Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009) Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 60:2155–2167

    Article  CAS  PubMed  Google Scholar 

  • Krauss KW, Ball MC (2013) On the halophytic nature of mangroves. Trees 27:7–11. doi:10.1007/s00468-012-0767-7

    Article  Google Scholar 

  • Kura-Hotta M, Mimura M, Tsujimura T et al (2001) High salt treatment induced Na+ extrusion and low salt treatment-induced Na+ accumulation in suspension-cultured cells of the mangrove plant, Bruguiera sexangula. Plant Cell Environ 24:1105–1112

    Article  CAS  Google Scholar 

  • Lacerda LD (1998) Biogeochemistry of trace metals and diffuse pollution in mangrove ecosystems. International Society for Mangrove Ecosystems, Okinawa, p 64

    Google Scholar 

  • Liu Y, Tam NFY, Yang JX, Pi N, Wong MH, Ye ZH (2009) Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Poll Bull 58:1843–1849

    Article  CAS  Google Scholar 

  • Liu Z, Cheng R, Xiao W, Guo Q, Wang N (2014) Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS One 9(9):e107636. doi:10.1371/journal.pone.0107636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aqua Bot 68:45–59

    Article  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  PubMed  Google Scholar 

  • Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461

    Article  CAS  PubMed  Google Scholar 

  • Macintosh DJ (1982) Fisheries and aquaculture significance of mangrove swamps, with special reference to the Indo-West Pacific region. In: Muir JF, Roberts RJ (eds) Recent advances in aquaculture. Croom Helm, England, pp 4–85

    Google Scholar 

  • Macnae W (1974) Mangrove forests and fisheries. FAO/UNDP Indian Ocean Programme. UN, IOFC/DEV/7434

  • Manson FJ, Loneragan NR, Skilleter GA, Phinn SR (2005) An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions. Oceanogr Mar Biol Annu Rev 43:483–513

    Google Scholar 

  • Matthes H, Kapetsky JM (1988) Worldwide compendium of mangrove-associated aquatic species of economic importance. FAO, Rome FAO Fishery Circular No 814:238

  • McCoy ED, Mushinsky HR, Johnson D, Meshaka WE (1996) Mangrove damage caused by Hurricane Andrew on the southwestern coast of Florida. Bull Mar Sci 59:1–8

    Google Scholar 

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution reciprocal effects? J Ecol 81:477–487

    Article  Google Scholar 

  • Mendez-Alonzo R, Moctezuma C et al (2015) Root biomechanics in Rhizophora mangle: anatomy, morphology and ecology of mangrove’s flying buttresses. Ann Bot. doi:10.1093/aob/mcv002

    PubMed  PubMed Central  Google Scholar 

  • Mickovski SB, Ennos AR (2003) Anchorage and asymmetry in the root system of Pinus peuce. Silva Fennica 37:161–173

    Article  Google Scholar 

  • Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828

    Article  Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T et al (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    CAS  PubMed  Google Scholar 

  • Miyama M, Hanagata N (2007) Microarray analysis of 7029 gene expression patterns in Burma mangrove under high-salinity stress. Plant Sci 172:948–957

    Article  Google Scholar 

  • Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of Burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171:234–241

    Article  Google Scholar 

  • Ng PKL, Sivasothi N (eds) (1999) A guide to the mangroves of Singapore II: Animal diversity. Singapore Science Centre, Singapore, p 168

    Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891–898

    Article  PubMed  Google Scholar 

  • Ohira W, Honda K, Nagai M, Ratanasuwan A (2013) Mangrove stilt root morphology modeling for estimating hydraulic drag in tsunami inundation simulation. Trees Struct Funct 27:141–148

    Article  Google Scholar 

  • Ong JE, Gong WK, Wong CH (2004) Allometry and partitioning of the mangrove—Rhizophora apiculata. Forest Ecol Manag 188:395–408

    Article  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hiraide M, Hirata Y, Fujimoto K, Tabuchi R, Lihpai S (2015) Assessing the carbon compositions and sources of mangrove peat in a tropical mangrove forest on Pohnpei Island, Federated States of Micronesia. Geoderma 245–246:11–20

    Article  CAS  Google Scholar 

  • Pang QY, Chen SX, Dai SJ, Chen YZ, Wang Y, Yan XF (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Parelle J, Brendel O, Bodenes C, Berveiller D, Dizengremel P et al (2006) Differences in morphological and physiological responses to waterlogging between two sympatric oak species (Quercus petraea [Matt.] Liebl., Quercus robur L.). Ann Forest Sci 63:849–859

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217. doi:10.1007/s00468-010-0417-x

    Article  Google Scholar 

  • Passioura JB, Ball MC, Knight JH (1992) Mangroves may salinise the soil and in so doing limit their transpiration rate. Funct Ecol 6:476–481

    Article  Google Scholar 

  • Patel PK, Singh AK, Tripathi N, Yadav D, Hemantaranjan A (2014) Flooding: abiotic constraint limiting vegetable productivity. Adv Plants Agric Res 1(3):00016. doi:10.15406/apar.2014.01.00016

    Google Scholar 

  • Peters EC, Gassman NJ, Firman JR, Richmond H, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Pezeshki SR, DeLaune RD, JrWH Patrick (1990) Differential response of selected mangroves to soil flooding and salinity: gas exchange and biomass. Can J Forest Res 20:869–874

    Article  Google Scholar 

  • Pi N, Tam NFY, Wu Y, Wong MH (2009) Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aq Bot 90:222–230

    Article  Google Scholar 

  • Pollard M, Beisson F, Li YH, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Ponnamperuma FN (1984) Effect of flooding on soils. In: Kozlowski T (ed) Flooding and Plant Growth. Academic Press, New York, pp 9–45

    Chapter  Google Scholar 

  • Poungparn S, Komiyama A, Tanaka A, Sangtiean T, Maknual C, Kato S, Tanapermpool P, Patanaponpaiboon P (2009) Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. J Trop Eco l25:393–400

    Article  Google Scholar 

  • Purnobasuki H, Suzuki M (2005) Functional anatomy of air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsk.)Vierh. Asian J Plant Sci 4:334–347

    Article  Google Scholar 

  • Rajaniemia TK, Allison VJ (2009) Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol Biochem 41:102-109. ISSN 0038–0717

  • Rieu I, Cristescu SM, Harren FJ, Huibers W, Voesenek LA, Mariani C, Vriezen WH (2005) RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. J Exp Bot 56:841–849

    Article  CAS  PubMed  Google Scholar 

  • Robert EMR et al. (2012) The ecological success of the mangrove Avicennia: the perfect combination of well-adapted wood anatomical characteristics and special radial growth? In: Proceedings of the international conference ‘Meeting on Mangrove ecology, functioning and management—MMM3’, Galle, Sri Lanka, 2–6 July 2012. VLIZ Special Publication, vol 57, p 158

  • Robertson AI, Blaber SJM (1992) Plankton, epibenthos and fish communities. Coast Estuar Stud 41:173–224

    Article  Google Scholar 

  • Ru QM, Zheng HL, Xiao Q (2006) Advances in salt tolerance mechanism of mangrove. Acta Bot Yunnanica (in Chinese) 28:78–84

    CAS  Google Scholar 

  • Saadeddin R, Doddema H (1986) Anatomy of the `extreme’ halophyte Arthrocnemum fruticosum (L.) Moq. In relation to its physiology. Ann Bot 57:531–544

    Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer Academic Publishers, pp 360

  • Sahebi M, Hanafi MM, Abdullah SNA, Rafii MY, Azizi P, Nejat N, Idris AS (2014) Isolation and expression analysis of novel silicon absorption gene from roots of mangrove (Rhizophora apiculata) via suppression subtractive hybridization. Biomed Res Int, vol 2014, Article ID 971985, 11 pages. doi:10.1155/2014/971985

  • Scholander PF (1968) How mangroves desalinate seawater. Plant Physiol 21:251–261

    CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plantarum 133:651–669

    Article  CAS  Google Scholar 

  • Shi SH, Huang YL, Zeng K, Tan FX, He HH, Huang JZ, Fu YX (2005) Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. Mol Phylogenet Evol 34:159–166

    Article  CAS  PubMed  Google Scholar 

  • Singh HR, Chong VC, Sasekumar A, Lim KH (1994) Value of mangroves as nursery and feeding grounds. Proceedings of the Third ASEAN-Australia Symposium on Living Coastal Resources, vol 1 Chulalongkorn University, Bangkok, pp 105-122

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 217–243

    Google Scholar 

  • Soares Junior FL et al (2013) Endo-and exoglucanase activities in bacteria from mangrove sediment. Braz J Microbiol 44:969–976

    Article  PubMed  Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubova O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  PubMed  Google Scholar 

  • Stelzer R, Lauchli A (1977) Salt and flooding tolerance of Puccinelli apeisonis: I. The effect of NaCl- and KCl-Salinity on growth at varied oxygen supply to the root. Z. Pflanzen physiol 83:35–42

    Article  CAS  Google Scholar 

  • Suarez N, Medina E (2006) Influence of salinity on Na+ and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica 44:268–274

    Article  CAS  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ et al (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl stressed Populus euphratica cells. Plant, Cell Environ 33:943–958

    Article  CAS  Google Scholar 

  • Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50:439–446. doi:10.1093/pcp/pcp002

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Hara S et al (2010) Burkholderia vietnamiensis isolated from root tissues of Nipa palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium. Biosci Biotechnol Biochem 74:1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Thomson CJ, Armstrong W, Waters I, Greenway H (1990) Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Environ 13:395–403

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Vasellati V, Oesterheld M, Medan D, Loreti J (2001) Effect of flooding and drought on the anatomy of Paspalun dilatatum. Ann Bot 88:355–360

    Article  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  PubMed  Google Scholar 

  • Visser EJ, Pierik R (2007) Inhibition of root elongation by ethylene in wetland and non-wetland plant species and the impact of longitudinal ventilation. Plant Cell Environ 30:31–38

    Article  CAS  PubMed  Google Scholar 

  • Visser ED, Colmer TD, Blom CWPM, Voesenk LACJ (2000) Change in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Article  Google Scholar 

  • Wada K, Komiyama A, Ogino K (1987) Underground vertical distributions of macro fauna and root in a mangrove forest of southern Thailand. Publication of the Seto Marine Biological Laboratory, vol 32, pp 329–333

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S et al (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    Article  CAS  PubMed  Google Scholar 

  • Walters BB, Ronnback P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236

    Article  Google Scholar 

  • Wang W, Yan Z, You S, Zhang Y, Chen L, Lin G (2011) Mangroves: obligate or facultative halophytes? A review. Trees Struct Funct 25:953–963

    Article  CAS  Google Scholar 

  • Wang HM, Xiao XR, Yang MY, Gao ZL, Jian Z, Fu XM, Chen YH (2014) Effects of salt stress on antioxidant defense system in the root of Kandelia candel. Bot Stud 55:57–63

    Article  CAS  Google Scholar 

  • Wen-jiao Z, Xiao-yong C, Peng L (1997) Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Mar Ecol Prog 159:293–301

    Article  Google Scholar 

  • Werner A, Stelzer R (1990) Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environ 13:243–255

    Article  CAS  Google Scholar 

  • Wong YY, Ho CL, Nguyen PD, Teo SS, Harikrishna JA, Rahim RA, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122

    Article  CAS  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1–12

    Article  CAS  Google Scholar 

  • Yabuki K, Kitaya Y, Sugi J (1985) Studies on the function of the mangrove pneumatophore. In: Sugi J (ed) Studies on the mangrove ecosystem. Tokyo Institute of Agriculture, Toyko, pp 76–79

    Google Scholar 

  • Yanez-Espinosa L, Flores J (2011) A review of sea-level rise effect on mangrove forest species: anatomical and morphological modifications. In: Casalegno S (ed) Global warming impacts—case studies on the economy, human health, and on urban and natural environments. InTech, Rijeka

    Google Scholar 

  • Young TP, Perkocha V (1994) Tree falls, crown asymmetry and buttresses. J Ecol 82:319–324

    Article  Google Scholar 

  • Youssef T, Saenger P (1996) Anatomical adaptive strategies to flooding and rhizosphere oxidation in mangrove seedlings. Aust J Bot 44:297–313

    Article  Google Scholar 

  • Zhila H, Mahmood H, Rozainah MZ (2014) Biodiversity and biomass of a natural and degraded mangrove forest of Peninsular Malaysia. Environ Earth Sci 71:4629–4635

    Article  Google Scholar 

  • Zhu Z, Chen J, Zheng HL (2012) Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiol. doi:10.1093/treephys/tps097

    Google Scholar 

  • Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G et al (1994) High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport. Bot Acta 107:218–229

    Article  CAS  Google Scholar 

  • Zimmermann U, Wagner HJ, Heidecker M, Mimietz S, Schneider H, Szimtenings M, Haase A, Mitlohner R, Kruck W, Hoffmann R, Konig W (2002) Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water. Trees 16:100–111

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to National Institute of Education, Nanyang Technological University, Singapore, for providing the research fund to the project AcRF RI 3/13 CZ and Dr. F. Berger for proofreading.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Additional information

Communicated by K. Noguchi and T. Koike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, S., Lum, S.K.Y. & Chen, Z. Mangrove root: adaptations and ecological importance. Trees 30, 451–465 (2016). https://doi.org/10.1007/s00468-015-1233-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1233-0

Keywords

Navigation