Skip to main content

Molecular basis of skeletal muscle plasticity-from gene to form and function

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 146))

Abstract

Skeletal muscle shows an enormous plasticity to adapt to stimuli such as contractile activity (endurance exercise, electrical stimulation, denervation), loading conditions (resistance training, microgravity), substrate supply (nutritional interventions) or environmental factors (hypoxia). The presented data show that adaptive structural events occur in both muscle fibres (myofibrils, mitochondria) and associated structures (motoneurons and capillaries). Functional adaptations appear to involve alterations in regulatory mechanisms (neuronal, endocrine and intracellular signalling), contractile properties and metabolic capacities. With the appropriate molecular techniques it has been demonstrated over the past 10 years that rapid changes in skeletal muscle mRNA expression occur with exercise in human and rodent species. Recently, gene expression profiling analysis has demonstrated that transcriptional adaptations in skeletal muscle due to changes in loading involve a broad range of genes and that mRNA changes often run parallel for genes in the same functional categories. These changes can be matched to the structural/functional adaptations known to occur with corresponding stimuli. Several signalling pathways involving cytoplasmic protein kinases and nuclear-encoded transcription factors are recognized as potential master regulators that transduce physiological stress into transcriptional adaptations of batteries of metabolic and contractile genes. Nuclear reprogramming is recognized as an important event in muscle plasticity and may be related to the adaptations in the myosin type, protein turnover, and the cytoplasma-to-myonucleus ratio. The accessibility of muscle tissue to biopsies in conjunction with the advent of high-throughput gene expression analysis technology points to skeletal muscle plasticity as a particularly useful paradigm for studying gene regulatory phenomena in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CLFS:

Chronic low-frequency electric stimulation

CR:

Caloric restriction

DE:

Detraining

DV:

Denervation

EE:

Endurance exercise

ER:

Endurance runners

I:

Immobilization

IN:

Inactivity

MG:

Real or simulated microgravity

RT:

Resistance training

WL:

Weightlifters

βOX:

β-Oxidation

DEL:

Deltoidus

EC coupling:

Excitation-contraction coupling

EDL:

Extensor digitorum longus

Gls:

Glycolysis

H+:

Reducing equivalents

IMF mitochondria:

Interfibrillar mitochondria

IMCL:

Intra-myocellular lipid

KC:

Krebs cycle

M:

Muscle

NMJ:

Neuromuscular junction

SR:

Sarcoplasmic reticulum

S mitochondria:

Subsarcolemmal mitochondria

Tn:

Troponin

VL:

Vastus lateralis

VO2max:

Maximal oxygen consumptioin

ACTH:

Corticotropin

AMPK:

5’-AMO-activated protein kinase

ATP:

Adempsome 5’-triphosphate

Ca2+:

Intracellular calcium

CaMKII:

Ca2+/CaM kinase II

Cor:

Cortisol

EN:

Epinephrine

ERK:

Extracellular signal-regulated kinase

GH:

Growth hormone

IGFBP-3:

Insulin-like growth factor binding protein 3

IGF-I:

Insulin-like growth factor I

JNK:

c-jun N-terminal kinase

c-jun:

cellular counterpart of retroviral insert from avian sarcoma virus 17

Ins:

Insulin

lep:

Leptin

MAPK:

Mitogen-activated (microtubule-associated) protein kinase

NRF-1 and 2:

Nuclear respiratory factor 1 and 2

p38:

p38 MAPK

RE:

Renin

ROS:

Reactive oxygen species

T3:

Triiodothyronine

T4:

Tetraiodothyronine

Tes:

Testosterone

TFAM:

Mitochondiral transcription factor

TSH:

Thyroid stimulating hormone

3’UTR:

3’ Untranslated region

5’UTR:

5’ Untranslated region

ACAA2:

3-ketoacyl-CoA thiolase

ACC:

Acetyl-CoA carboxylase

AIF1:

Allograft inflammatory factor 1

AOX1:

Aldehyde oxidase

ATP5A:

ATP synthase alpha chain

ATP5C:

ATP synthase gamma chain

ATP5G3:

ATP synthase lipid-binding protein

ATP5J:

ATP synthase coupling factor 6

ATPB:

ATP synthase beta chain

Cat H:

Cathepsin H

CDC16Hs:

Cell division cycle 16

c-fos:

c-fos Proto-oncogene

c-jun:

c-jun Protooncogene

CK:

Creatine kinase

Col:

Collagen type

CPT I and II:

Carnitine O-palmitoyltransferases I and II

COX:

Cytochrome C oxidase subunits

CSF-1:

Colony stimulating factor

CXCL5:

Small inducible cytokine B5

CYP2A6:

Cytochrome P450 2A6

CYP2B6:

Cytochrome P450 2B6

CYP2C8:

Cytochrome P450 2C8

CYPdb1:

Cytochrome P450 db1

DDO:

d-aspartate oxidase

DIA1:

NADH-cytochrome b5 reductase

DNA:

Deoxyribonucleic acid

DP5:

Neuronal death protein

EGFR:

Epidermal growth factor receptor

ERF:

Ets2 repressor factor

FAP:

Fibroblast activation protein

FAT/CD36:

Fatty acid translocase

FBP2:

d-fructose-1,6-bisphosphate 1-phosphohydrolase

FN:

Fibronectin

Fum:

Fumarase

gamma 1:

Interferon gamma treatment inducible mRNA

glut-1:

Glucose transporter 1

HIAP1:

Inhibitor of apoptosis protein 1

HIF-1α:

Hypoxia-inducible factor 1 alpha

HPARG:

Poly(ADP-ribose) glycohydrolase

HPXEL:

Peroxisomal enoyl-CoA hydratase-like protein

HSC:

Heat shock cognate

HSP:

Heat shock protein

HSP27 and 70:

Heat shock protein 27 and 70

HSP2:

Heparan sulfate proteoglycan 2

IL-1, -12 and -18:

Interleukin 1, 12 and 18

IMPDH1:

Inosine-5’-monophosphate dehydrogenase 1

LDH:

lactate dehydrogenase

LIF:

Leukaemia inhibitory factor precursor

LN:

Laminin

LPL:

Lipoprotein lipase

LRP1:

Low-density lipoprotein receptor-related protein 1

LTC4S:

Human leucotriene C4 synthase

Mac-2:

Macrophage subpopulation-specific antigen 2

MARK3:

MAP/microtubule affinityregulating kinase 3 long

MAT1:

CDK-activating kinase assembly factor

MCAD:

Medium chain-specific acyl-CoA dehydrogenase

MCT1, 2 and 4:

Monocarboxylate transporters 1, 2 and 4

MHC:

Myosin heavy chain

MHC10:

Nonmuscle type B myosin heavy chain (MYH10)

MHC9:

Nonmuscle type A myosin heavy chain (MYH9)

mRNA:

Messenger ribonucleic acid

MSH3:

DNA mismatch repair protein

MT1B:

Metallothionein-IB

MT1F:

Metallothionein I F

MEF2:

Myocyte enhancer factor 2

myoD:

Myoblast determination protein

MRF4:

Muscle regulatory factor 4

myf 5 and 6:

Myogenic factors 5 and 6

nAChR:

Nicotinic acetyl choline receptor

NADH6:

Mitochondrially-encoded NADH dehydrogenase subunit

NF-kappa B:

Nuclear factor kappa B

NCAM1:

Neural cell adhesion molecule 1

NDUFV1:

NADH-ubiquinone oxidoreductase 51 kDa subunit

NDUFV2:

NADH-ubiquinone oxidoreductase 24 kDa subunit complex core protein 2

NF-kB p65:

Nuclear factor kappa B p65 subunit

NF-Y:

Nuclear factor Y protein subunit A

NNT:

Mitochondrial NAD(P) transhydrogenase

NRG-1:

Neuregulin

ORP150:

150 kDa Oxygen-regulated protein

p21:

Cyclin-dependent kinase inhibitor 1

PON2:

Paraoxonase 2

PDK4:

Pyruvate dehydrogenase kinase 4

PP2Ag1:

Serine/threonine protein phosphatase 2A

PPAR:

Peroxisome proliferator-activated receptor

RANTES:

Regulated upon activation, normal T cell expressed and secreted

RECQ2:

RecQ-like type 2 DNA helicase

RNA:

Ribonucleic acid

RYK:

Related to receptor tyrosine kinase

SCHAD:

Short chain 3-hydroxyacyl-CoA dehydrogenase

SDH:

Succinate dehydrogenase

SH3GL3:

SH3-containing GRB2-like protein 3

SOD2:

Manganese superoxide dismutase

SVCT2:

Sodium-dependent vitamin C transporter

tie 2:

Angiopoietin 1 receptor

TRAP230:

Thyroid hormone receptor-associated protein complex component

TSP4:

Thrombospondin 4

UCP:

Mitochondrial uncoupling protein

UQCRB:

Ubiquinol-cytochrome C reductase

UQCRC2:

Ubiquinol-cytochrome C reductase

UQCRH:

Ubiquinol-cytochrome C reductase complex 11 kDa protein

VEGF:

Vascular endothelial growth factor

References

  • Adams GR, Hather BM, Baldwin KM, Dudley GA (1993) Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol 74:911–915

    Article  CAS  PubMed  Google Scholar 

  • Adams GR, Haddad F, Baldwin KM (1999) Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Alfranca A, Gutierrez MD, Vara A, Aragones J, Vidal F, Landazuri MO (2002) c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription. Mol Cell Biol 22:12–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DL, Linderman JK, Roy RR, et al (1997) Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587

    Article  CAS  PubMed  Google Scholar 

  • Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22: 1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Alway SE, MacDougall JD, Sale DG, Sutton JR, McComas AJ (1988) Functional and structural adaptations in skeletal muscle of trained athletes. J Appl Physiol 64:1114–1120

    Article  CAS  PubMed  Google Scholar 

  • Amaral SL, Linderman JR, Morse MM, Greene AS (2001a) Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation. 8:57–67

    Article  CAS  PubMed  Google Scholar 

  • Amaral SL, Papanek PE, Greene AS (2001b) Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. Am J Physiol Heart Circ Physiol 281:H1163–H1169

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Aagaard P (2000) Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 23: 1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Klitgaard H, Bangsbo J, Saltin B (1994a) Myosin heavy chain isoforms in single fibres from m-vastus lateralis of soccer players-effects of strength-training. Acta Physiol Scand 150:21–26

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Klitgaard H, Saltin B (1994b) Myosin heavy chain isoforms in single fibres from m vastus lateralis of sprinters: Influence of training. Acta Physiol Scand 151:135–142

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Mohr T, Biering-Sorensen F, Galbo H, Kjaer M (1996) Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch 431:513–518

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Schiaffino S (1997) Mismatch between myosin heavy chain mRNA and protein distribution in human skeletal muscle fibers. Am J Physiol 272:C1881–C1889

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Schjerling P, Saltin B (2000) Muscle, genes and athletic performance. Sci Am 283:48–55

    Article  CAS  PubMed  Google Scholar 

  • Aronson D, Violan MA, Dufresne SD, Zangen D, Fielding RA, Goodyear LJ (1997) Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 99:1251–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronson D, Boppart MD, Dufresne SD, Fielding RA, Goodyear LJ (1998) Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem Biophys Res Commun 251:106–110

    Article  CAS  PubMed  Google Scholar 

  • Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, Aiken JM (1997) Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11:573–581

    Article  CAS  PubMed  Google Scholar 

  • Balagopal P, Schimke JC, Ades P, Adey D, Nair KS (2001) Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab 280:E203–E208

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Haddad F (2001) Plasticity in skeletal, cardiac, and smooth muscle invited review: effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345–357

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (2000) Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 11:109–140

    Article  CAS  PubMed  Google Scholar 

  • Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson J, Gustafsson T, Widegren U, Jansson E, Sundberg CJ (2001) Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 443:61–66

    Article  CAS  PubMed  Google Scholar 

  • Bentley DJ, Zhou S, Davie AJ (1998) The effect of endurance exercise on muscle force generating capacity of the lower limbs. J Sci Med Sport 1:179–188

    Article  CAS  PubMed  Google Scholar 

  • Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    Article  CAS  PubMed  Google Scholar 

  • Bergamini E (1992) Protein degradation and modification. Introduction and overview. Ann N Y Acad Sci 663: 43–47

    Article  CAS  PubMed  Google Scholar 

  • Bergeron R, Ren JM, Cadman KS, et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    Article  CAS  PubMed  Google Scholar 

  • Bergstroem J, Hermansen L, Hultman E, Saltin B (1967) Diet muscle glycogen and physical performance. Acta Physiol Scand 71:172–179

    Google Scholar 

  • Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19:139–145

    Article  CAS  PubMed  Google Scholar 

  • Bhasin S, Storer TW, Berman N, et al (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7

    Article  CAS  PubMed  Google Scholar 

  • Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metabol 31:E514–E520

    Article  Google Scholar 

  • Bizeau ME, Willis WT, Hazel JR (1998) Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. J Appl Physiol 85:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Booth FW, Baldwin KM (1995) Muscle plasticity: energy demanding and supply processes. In: Rowell LB, Shepherd JT (eds). Handbook of physiology. Oxford University Press, New York, pp 1076–1121

    Google Scholar 

  • Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise-perspective of various models. Physiol Rev 71:541–585

    Article  CAS  PubMed  Google Scholar 

  • Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE (2002) Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 93:3–30

    Article  PubMed  Google Scholar 

  • Boppart MD, Aronson D, Gibson L, Roubenoff R, Abad LW, Bean J, Goodyear LJ, Fielding RA (1999) Eccentric exercise markedly increases c-Jun NH(2)-terminal kinase activity in human skeletal muscle. J Appl Physiol 87: 1668–1673

    Article  CAS  PubMed  Google Scholar 

  • Boppart MD, Hirshman MF, Sakamoto K, Fielding RA, Goodyear LJ (2001) Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle. Am J Physiol Cell Physiol 280:C352–C358

    Article  CAS  PubMed  Google Scholar 

  • Bradley RL, Cleveland KA, Cheatham B (2001) The adipocyte as a secretory organ: mechanisms of vesicle transport and secretory pathways. Recent Prog Horm Res 56:329–358

    Article  CAS  PubMed  Google Scholar 

  • Brady PS, Park EA, Liu JS, Hanson RW, Brady LJ (1992) Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochem J 286:779–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD (1996) Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81:355–361

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2000) Intra-and extra-cellular lactate shuttles. Med Sci Sports Exerc 32:790–799

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the crossover concept. J Appl Physiol 76:2253–2261

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1991) Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo. Magn Reson Med 17:82–94

    Article  CAS  PubMed  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motoneurons and muscles in respect of the characteristic speeds of their responses. J Physiol 150:417–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonanno A, Cheng J, Venepally P, Weis J, Calvo S (1998) Activity-dependent regulation of muscle genes: repressive and stimulatory effects of innervation. Acta Physiol Scand 163:S17–S26

    Article  CAS  PubMed  Google Scholar 

  • Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R (1997) Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35:86–91

    Article  CAS  PubMed  Google Scholar 

  • Butta N, Gonzalez-Manchon C, Arias-Salgado EG, Ayuso MS, Parrilla R (2001) Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene. Regulatory role of Sp1 and AP-2. Eur J Biochem 268:3017–3027

    Article  CAS  PubMed  Google Scholar 

  • Carey AL, Staudacher HM, Cummings NK, et al (2001) Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol 91:115–122

    Article  CAS  PubMed  Google Scholar 

  • Carmeli E, Reznick AZ (1994) The physiology and biochemistry of skeletal muscle atrophy as a function of age. Proc Soc Exp Biol Med 206:103–113

    Article  CAS  PubMed  Google Scholar 

  • Carraro F, Hartl WH, Stuart CA, Layman DK, Jahoor F, Wolfe RR (1990a) Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol 258:E821–E831

    CAS  PubMed  Google Scholar 

  • Carraro F, Stuart CA, Hartl WH, Rosenblatt J, Wolfe RR (1990b) Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 259:E470–E476

    CAS  PubMed  Google Scholar 

  • Carroll TJ, Abernethy PJ, Logan PA, Barber M, McEniery MT (1998) Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Appl Physiol 78:270–275

    Article  CAS  Google Scholar 

  • Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88:337–343

    Article  CAS  PubMed  Google Scholar 

  • Carson JA, Nettleton D, Reecy JM (2002) Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16:207–209

    Article  CAS  PubMed  Google Scholar 

  • Ceddia RB, William WN, Jr, Curi R (2001) The response of skeletal muscle to leptin. Front Bio Sci 6: D90–D97

    Article  CAS  Google Scholar 

  • Chandel NS, Schumacker PT (2000) Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88:1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chen ZP, Mcconell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279: E1202–E1206

    Article  CAS  PubMed  Google Scholar 

  • Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K (1992) Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 73:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Chilibeck PD, Bell GJ, Socha T, Martin T (1998) The effect of aerobic exercise training on the distribution of succinate dehydrogenase activity throughout muscle fibres. Res Can J Appl Physiol 23:74–86

    Article  CAS  Google Scholar 

  • Chilibeck PD, Syrotuik DG, Bell GJ (1999) The effect of strength training on estimates of mitochondrial density and distribution throughout muscle fibres. Res Eur J Appl Physiol 80:604–609

    Article  CAS  Google Scholar 

  • Chin ER, Allen DG (1996) The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. Res J Physiol 491:813–824

    CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiquet M, Flück M (2001) Early responses to mechanical stress: from signals at the cell surface to altered gene expression, cell and molecular responses to stress. In: Storey KB, Storey JM (eds) Protein adaptations and signal transduction. Elsevier Science, pp 97–110

    Google Scholar 

  • Chopard A, Pons F, Marini JF (2001) Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280:R323–R330

    Article  CAS  PubMed  Google Scholar 

  • Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153

    Article  CAS  PubMed  Google Scholar 

  • Clement K, Viguerie N, Diehn M, et al (2002) In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Res 12:281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly DM, Vandervoort AA (2000) Effects of isokinetic strength training on concentric and eccentric torque development in the ankle dorsiflexors of older adults. J Gerontol A Biol Sci Med Sci 55:B465–B472

    Article  CAS  PubMed  Google Scholar 

  • Connor MK, Bezborodova O, Escobar CP, Hood DA (2000) Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. J Appl Physiol 2000. 88:1601–1606

    CAS  Google Scholar 

  • Costill DL, Coyle EF, Fink WF, Lesmes GR, Witzmann F (1979) Adaptations in skeletal muscle following strength training. J Appl Physiol 46:96–99

    Article  CAS  PubMed  Google Scholar 

  • Craig BW, Brown R, Everhart J (1989) Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Age Dev 49:159–169

    Article  CAS  Google Scholar 

  • Davis PJ, Davis FB (1996) Nongenomic actions of thyroid hormone. Thyroid 6:497–504

    Article  CAS  PubMed  Google Scholar 

  • Dawes NJ, Cox VM, Park KS, Nga H, Goldspink DF (1996) The induction of c-fos and c-jun in the stretched latissimus dorsi muscle of the rabbit: responses to duration, degree and re-application of the stretch stimulus. Exp Physiol 81:329–339

    Article  CAS  PubMed  Google Scholar 

  • Day DA, Tuite MF (1998) Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J Endocrinol 157:361–371

    Article  CAS  PubMed  Google Scholar 

  • Degens H, Soop M, Hook P, Ljungqvist O, Larsson L (1999) Post-operative effects on insulin resistance and specific tension of single human skeletal muscle fibres. Res Clin Sci (Lond) 97:449–455

    Article  CAS  Google Scholar 

  • Demirel HA, Powers SK, Naito H, Hughes M, Coombes JS (1999) Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship. J Appl Physiol 86:1002–1008

    Article  CAS  PubMed  Google Scholar 

  • Deschenes MR, Britt AA, Gomes RR, Booth FW, Gordon SE (2001) Recovery of neuromuscular junction morphology following 16 days of spaceflight. Synapse 42:177–184

    Article  CAS  PubMed  Google Scholar 

  • Desplanches D, Hoppeler H, Linossier MT, Denis C, Claassen H, Dormois D, Lacour JR, Geyssant A (1993) Effects of training in normobaric hypoxia on human muscle ultrastructure. Pflugers Arch 425:263–267

    Article  CAS  PubMed  Google Scholar 

  • Desplanches D, Hoppeler H, Mayet MH, Denis C, Claassen H, Ferretti G (1998) Effects of bedrest on deltoideus muscle morphology and enzymes. Acta Physiol Scand 162:135–140

    Article  CAS  PubMed  Google Scholar 

  • Dominici FP, Turyn D (2002) Growth hormone-induced alterations in the insulin-signaling system. Exp Biol Med (Maywood.) 227:149–157

    Article  CAS  Google Scholar 

  • Dupont G, Goldbeter A (1998) CaM kinase II as frequency decoder of Ca2+ oscillations. BioEssays 20: 607–610

    Article  CAS  PubMed  Google Scholar 

  • Dupont-Versteegden EE, Houle JD, Gurley CM, Peterson CA (1998) Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol 275:C1124–C1133

    Article  CAS  PubMed  Google Scholar 

  • Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 88:1349–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emonson DL, Aminuddin AH, Wight RL, Scroop GC, Gore CJ (1997) Training-induced increases in sea level VO2max and endurance are not enhanced by acute hypobaric exposure. Eur J Appl Physiol 76:8–12

    Article  CAS  Google Scholar 

  • Ertl AC, Diedrich A, Biaggioni I, et al (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ (1995) Effects of exercise on body composition and functional capacity of the elderly. J Gerontol A Biol Sci Med Sci 50 [Spec No]:147–150

    PubMed  Google Scholar 

  • Everts ME (1996) Effects of thyroid hormones on contractility and cation transport in skeletal muscle. Acta Physiol Scand 156:325–333

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Antonutto G, Denis C, et al (1997) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol 501:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208

    Article  CAS  PubMed  Google Scholar 

  • Florini JR, Ewton DZ, Magri KA (1991) Hormones, growth factors, and myogenic differentiation. Annu Rev Physiol 53:201–216

    Article  CAS  PubMed  Google Scholar 

  • Flück M, Waxham MN, Hamilton MT, Booth FW (2000) Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88:352–358

    Article  PubMed  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenette J, Tidball JG (1998) Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. Am J Physiol 275:C818–C825

    Article  CAS  PubMed  Google Scholar 

  • Frisch H (1999) Growth hormone and body composition in athletes. J Endocrinol Invest 22:106–109

    CAS  PubMed  Google Scholar 

  • Fryburg DA, Louard RJ, Gerow KE, Gelfand RA, Barrett EJ (1992) Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin’s antiproteolytic action in humans. Diabetes 41:424–429

    Article  CAS  PubMed  Google Scholar 

  • Gamrin L, Essen P, Hultman E, McNurlan MA, Garlick PJ, Wernerman J (2000) Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann Surg 231:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayeski TEJ, Honig (1978) Myoglobin saturation and calculated PO2 in single cells of resting gracilis muscle. Adv Exptl Biol Med 94:77–84

    Article  Google Scholar 

  • Goedecke JH, Christie C, Wilson G, et al (1999) Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism 48:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL, Goodman HM (1969) Amino acid transport during work-induced growth of skeletal muscle. Am J Physiol 216:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldspink G, Scutt A, Martindale J, Jaenicke T, Turay L, Gerlach GF (1991) Stretch and force generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal muscle. Biochem Soc Trans. 19:368–373

    Article  CAS  PubMed  Google Scholar 

  • Gordon JW, Rungi AA, Inagaki H, Hood DA (2001a) Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396

    Article  CAS  PubMed  Google Scholar 

  • Gordon SE, Flück M, Booth FW (2001b) Selected Contribution. Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci U S A 98:1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green HJ, Klug GA, Reichmann H, Seedorf U, Wiehrer W, Pette D (1984) Exercise-induced fiber type transition with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pfluegers Arch 400:432–438

    Article  CAS  Google Scholar 

  • Green HJ, Sutton JR, Cymerman A, Young PM, Houston CS (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66:2454–2461

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Sutton JR, Wolfel EE, Reeves JT, Butterfield GE, Brooks GA (1992) Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise. J Appl Physiol 73:2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Greiwe JS, Kwon G, McDaniel ML, Semenkovich CF (2001) Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab 281:E466–E471

    Article  CAS  PubMed  Google Scholar 

  • Gundersen K (1998) Determination of muscle contractile properties: the importance of the nerve. Acta Physiol Scand 162:333–341

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H85

    CAS  PubMed  Google Scholar 

  • Hakkinen K, Kauhanen H (1989) Daily changes in neural activation, force-time and relaxation-time characteristics in athletes during very intense training for one week. Electromyogr Clin Neuro Physiol 29:243–249

    CAS  Google Scholar 

  • Haman F, Perronet F, Kenny GP, et al (2002) Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J Appl Physiol 93:77–84

    Article  CAS  PubMed  Google Scholar 

  • Hamilton MT, Etienne J, McClure WC, Pavey BS, Holloway AK (1998) Role of local contractile activity and muscle fiber type on LPL regulation during exercise. Am J Physiol 275:E1016–E1022

    CAS  PubMed  Google Scholar 

  • Hansen S, Kvorning T, Kjaer M, Sjogaard G (2001) The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 11:347–354

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M (2000) Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 27: 225–228

    Article  CAS  PubMed  Google Scholar 

  • Harridge SD (1996) The muscle contractile system and its adaptation to training. In: Marconnet P, Saltin B, Komi P, Poortmans J (eds) Human muscular function during dynamic exercise. Karger, Basel, pp 82–94

    Google Scholar 

  • Harridge S, Magnusson G, Saltin B (1997) Life-long endurance-trained elderly men have high aerobic power, but have similar muscle strength to non-active elderly men. Aging (Milano) 9:80–87

    CAS  Google Scholar 

  • Harridge SD, Andersen JL, Hartkopp A, Zhou S, Biering-Sorensen F, Sandri C, Kjaer M (2002) Training by low-frequency stimulation of tibialis anterior in spinal cord-injured men. Muscle Nerve 25:685–694

    Article  PubMed  Google Scholar 

  • Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE (2000) Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. Am J Physiol Endocrinol Metab 278:E620–E626

    Article  CAS  PubMed  Google Scholar 

  • Helge JW (1996) Interaction of diet and training on endurance performance and substrate utilization. PhD Thesis, University of Copenhagen

    Google Scholar 

  • Helge JW, Wulff B, Kiens B (1998) Impact of a fat rich diet on endurance performance in man. Role of the dietary period. Med Sci Sports Exerc 30:456–461

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JM, Fedele MJ, Farrell PA (2000) Time course evaluation of protein synthesis and glucose uptake after acute resistance exercise in rats. J Appl Physiol 88:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Hespel P, Op’t Eijnde B, Van Leemputte M, et al (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536: 625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse V, Vilser C, Scheibe J, Jahreis G, Foley T (1989) Thyroid hormone metabolism under extreme body exercises. Exp Clin Endocrinol 94:82–88

    Article  CAS  PubMed  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, et al (2000) Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J Gerontol A Biol Sci Med Sci 55: B347–B354

    Article  CAS  PubMed  Google Scholar 

  • Hjeltnes N, Galuska D, Bjornhom M, et al (1998) Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB J 12:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Beatty CL, Burelle Y, Trump ME, McKenzie DC, Matheson GO (2002) The lactate paradox in human high-altitude physiological performance. News Physiol Sci 17:122–126

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptation to endurance exercise in muscle. Annu Rev Physiol 38: 273–291

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    Article  CAS  PubMed  Google Scholar 

  • Hood DA (2001) Invited Review. Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H (1999) Skeletal muscle substrate metabolism. Int J Obes Relat Metab Disord 23 [Suppl 3]:S7-10

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Flück M (2002) Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol 205:2143–2152

    Article  PubMed  Google Scholar 

  • Hoppeler H, Vogt M (2001a) Hypoxia training for sea-level performance. Training high-living low. Adv Exp Med Biol 502:61–73

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Vogt M (2001b) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Weibel ER (1998) Limits for oxygen and substrate transport in mammals. J Exp Biol 201: 1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168:445–456

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Luethi P, Claassen H, Weibel ER, Howald H (1973) The ultrastructure of the normal human skeletal muscle-a morphometric analysis on untrained men, women, and well-trained orienteers. Pfluegers Arch 344: 217–232

    Article  CAS  Google Scholar 

  • Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59:320–327

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Cerretelli P (1990) Muscular exercise at high altitude: II. Morphological adaptation of skeletal muscle to chronic hypoxia. Int J Sport Med 11:S3–S9

    Article  Google Scholar 

  • Hoppeler H, Billeter R, Horvath PJ, Leddy JJ, Pendergast DR (1999) Muscle structure with low-and highfat diets in well-trained male runners. Int J Sports Med 20:522–526

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JF, Leone TC, Feng W, Kelly DP, Klein S (2000) Effect of endurance training on lipid metabolism in women: a potential role for PPARalpha in the metabolic response to training. Am J Physiol Endocrinol Metab 279: E348–E355

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T, Dempsey L, Fraser D, et al (2000) Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol 524:293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howald H (1982) Training-induced morphological and functional changes in skeletal muscle. Int J Sport Med 3: 1–12

    Article  CAS  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pfluegers Arch 403:369–376

    Article  CAS  Google Scholar 

  • Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P (1990) Muscular exercise at high altitude: III. Effects of chronic hypoxia on muscle enzymes. Int J Sports Med 11:S10–S14

    Article  PubMed  Google Scholar 

  • Howrie DL (1987) Growth hormone for the treatment of growth failure in children. Clin Pharm 6:283–291

    CAS  PubMed  Google Scholar 

  • Hudlicka O (1998) Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation? Microcirculation 5:5–23

    Article  Google Scholar 

  • Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and Myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Develop 118: 1137–1147

    Article  CAS  Google Scholar 

  • Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16:529–538

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70:375–387

    Article  CAS  PubMed  Google Scholar 

  • Huss JM, Levy FH, Kelly DP (2001) Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 276:27605–27612

    Article  CAS  PubMed  Google Scholar 

  • Huxley A (1988) Muscular contraction. Annu Rev Physiol 50:1–16

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto M, Nikawa T, Takeda S, et al (2001) Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. FASEB J 15:1279–1281

    Article  CAS  PubMed  Google Scholar 

  • Ingjer F (1979) Capillary supply and mitochondrial content of different skeletal muscle types in untrained and endurance-trained men. A histochemical and ultrastructural study. Eur J Appl Physiol 40:197–209

    Article  CAS  Google Scholar 

  • Jansson E, Kaijser L (1982) Effect of diet on the utilization of blood-borne and intramuscular substrates during exercise in man. Acta Physiol Scand 115:19–30

    Article  CAS  PubMed  Google Scholar 

  • Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15:1312–1314

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205:2305–2322

    Article  PubMed  Google Scholar 

  • Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM, et al (2000) Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev 120:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kadi F, Thornell LE (1999) Training affects myosin heavy chain phenotype in the trapezius muscle of women. Histochem Cell Biol 112:73–78

    Article  CAS  PubMed  Google Scholar 

  • Kadi F, Thornell LE (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113:99–103

    Article  CAS  PubMed  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Butler-Browne GS, Thornell LE (1999) Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci U S A 98:5093–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser B, Hoppeler H (1991) Performance capacity and muscle structure of Himalayan sherpas. J Appl Physiol 70:1938–1942

    Article  CAS  PubMed  Google Scholar 

  • Kiessling KH, Pilstroem L, Karlsson J, Piehl K (1973) Mitochondrial volume in skeletal muscle from young and old physically untrained and trained healthy men and from alcoholics. Clin Sci 44:547–554

    Article  CAS  PubMed  Google Scholar 

  • Kietzmann T, Fandrey J, Acker H (2000) Oxygen radicals as messengers in oxygen-dependent gene expression. News Physiol Sci 15:202–208

    CAS  PubMed  Google Scholar 

  • Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–E33

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR (2002) Regulation of global and specific mRNA translation by amino acids. J Nutr 132:883–886

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Hanel B, Worm L, et al (1999) Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. Am J Physiol 277:R76–R85

    CAS  PubMed  Google Scholar 

  • Kliewer SA, Sundseth SS, Jones SA, et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94: 4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, Saltin B (1990a) Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch 416: 470–472

    Article  CAS  PubMed  Google Scholar 

  • Klitgaard H, Zhou M, Richter EA (1990b) A myosin heavy chain composition of single fibres from m biceps brachii of male body builders. Acta Physiol Scand 140:175–180

    Article  CAS  PubMed  Google Scholar 

  • Klitgaard H, Zhou M, Schaffino S, Betto R, Salviati G, Sal (1990c) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand 140:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kniffeki KD, Mense S, Schmidt RF (1981) Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res 48:I25–I31

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Fry AC, Warren BJ, Stone MH, Fleck SJ, Kearney JT, Conroy BP, Maresh CM, Weseman CA, Triplett NT, et al (1992) Acute hormonal responses in elite junior weightlifters. Int J Sports Med 13:103–109

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gothshalk LA, Volek JS, Marx JO, Newton RU, Hakkinen K (1998) The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 78:69–76

    Article  CAS  Google Scholar 

  • Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87:982–992

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Dudley GA, Tesch PA, Gordon SE, Hather BM, Volek JS, Ratamess NA (2001) The influence of muscle action on the acute growth hormone response to resistance exercise and short-term detraining. Growth Horm IGF Res 11:75–83

    Article  CAS  PubMed  Google Scholar 

  • Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol 88:794–796

    Article  CAS  PubMed  Google Scholar 

  • Lambert EV, Speechly DP, Dennis SC, Noakes TD (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation of a high-fat diet. Eur J Appl Physiol 69:287–293

    Article  CAS  Google Scholar 

  • Lambert EV, Goedecke JH, Zyle C, Murphy K, Hawley JA, Dennis SC, Noakes TD (2001) High-fat diet versus habitual diet prior to carbohydrate loading: effects of exercise metabolism and cycling performance. Int J Sport Nutr Exerc Metab 11:209–225

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange KH, Andersen JL, Beyer N, et al (2002) GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. J Clin Endocrinol Metab 87:513–523

    Article  CAS  PubMed  Google Scholar 

  • Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432:320–328

    Article  CAS  PubMed  Google Scholar 

  • Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–C649

    Article  CAS  PubMed  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  CAS  PubMed  Google Scholar 

  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesmes GR, Costill DL, Coyle EF, Fink WJ (1978) Muscle strength and power changes during maximal isokinetic training. Med Sci Sports 10:266–269

    CAS  PubMed  Google Scholar 

  • Leterme D, Falempin M (1996) Contractile properties of rat soleus motor units following 14 days of hindlimb unloading. Pflugers Arch 432:313–319

    Article  CAS  PubMed  Google Scholar 

  • Leveritt M, MacLaughlin H, Abernethy PJ (2000) Changes in leg strength 8 and 32 h after endurance exercise. J Sports Sci 18:865–871

    Article  CAS  PubMed  Google Scholar 

  • Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt SL, Wells DJ (1988) Skeletal muscle mitochondria: the aerobic gate? Adv Exp Med Biol 227: 207–213

    Article  CAS  PubMed  Google Scholar 

  • Linossier MT, Dormois D, Perier C, Frey J, Geyssant A, Denis C (1997) Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol Scand 161:439–445

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Steinacker JM (2001) Changes in skeletal muscle heat shock proteins: pathological significance. Front Bio Sci 6:D12–D25

    CAS  Google Scholar 

  • Lloyd PG, Yang HT, Terjung RL (2001) Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol 281:H2528–H2538

    Article  CAS  PubMed  Google Scholar 

  • Lombardi A, Damon M, Vincent A, Goglia F, Herpin P (2000) Characterisation of oxidative phosphorylation in skeletal muscle mitochondria subpopulations in pig: a study using top-down elasticity analysis. FEBS Lett 475: 84–88

    Article  CAS  PubMed  Google Scholar 

  • Lotta S, Scelsi R, Alfonsi E, et al (1991) Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Paraplegia 29:247–252

    CAS  PubMed  Google Scholar 

  • Luethi JM, Howald H, Claassen H, Roesler K, Vock P, Hoppeler H (1986) Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int J Sports Med 7:123–127

    Article  Google Scholar 

  • MacDougall JD, Sale DG, Moroz JR, Elder GCB, Sutton JR, Howald H (1979) Mitochondrial volume density in human muscle following heavy resistance training. Med Sci Sport Exercise 11:164–166

    CAS  Google Scholar 

  • MacDougall JD, Sale DG, Elder GC, Sutton JR (1982) Muscle ultrastructural characteristics of elite power-lifters and bodybuilders. Eur J Appl Physiol 48:117–126

    Article  CAS  Google Scholar 

  • MacDougall JD, Green HJ, Sutton JR, Coates G, Cymerman AYP, Houston CS (1991) Operation Everest-II-Structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand 142:421–427

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malarkey WB, Hall JC, Rice RR Jr, et al (1993) The influence of age on endocrine responses to ultraendurance stress. J Gerontol 48:M134–M139

    Article  CAS  PubMed  Google Scholar 

  • Martin TP, Stein RB, Hoeppner PH, Reid DC (1992) Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol 72:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Martin WH III (1993) Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity. Ann Thorac Surg 56:S24–S34

    Article  PubMed  Google Scholar 

  • Martin WH III (1996) Effects of acute and chronic exercise on fat metabolism. Exerc Sport Sci Rev 24: 203–231

    Article  PubMed  Google Scholar 

  • Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91:693–702

    Article  CAS  PubMed  Google Scholar 

  • Martineau LC, Gardiner PF (2002) Skeletal muscle is sensitive to the tension-time integral but not to the rate of change of tension, as assessed by mechanically induced signaling. J Biomech 35:657–663

    Article  PubMed  Google Scholar 

  • Martinelli M, Winterhalder R, Cerretelli P, Howald H, Hoppeler H (1990) Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia 46:672–676

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Okazaki K, Kuno S, Asano K, Shimojo H, Katsuta S (2001) Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle. Eur J Appl Physiol 85:486–490

    Article  CAS  PubMed  Google Scholar 

  • McAllister RM, Delp MD, Laughlin MH (1997) A review of effects of hypothyroidism on vascular transport in skeletal muscle during exercise. Can J Appl Physiol 22:1–10

    Article  CAS  PubMed  Google Scholar 

  • McClelland GB, Brooks GA (2002) Changes in MCT 1, MCT 4, and LDH expression are tissue-specific in rats after long-term hypobaric hypoxia. J Appl Physiol 92:1573–1584

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon LJ, Byrd SK, Hodgson DR (1992) Ultrastructural changes in skeletal muscle after fatiguing exercise. J Appl Physiol 72:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Melissa L, MacDougall JD, Tarnopolsky MA, Cipriano N, Green HJ (1997) Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc 29:238–243

    Article  CAS  PubMed  Google Scholar 

  • Miller WC, Bryce GR, Conlee RK (1984) Adaptations to a high-fat diet that increase exercise endurance in male rats. J Appl Physiol 56:78–83

    Article  CAS  PubMed  Google Scholar 

  • Minet E, Arnould T, Michel G, et al (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 468:53–58

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CR, Harris MB, Cordaro AR, Starnes JW (2002) Effect of body temperature during exercise on skeletal muscle cytochrome c oxidase content. J Appl Physiol 93:526–530

    Article  CAS  PubMed  Google Scholar 

  • Mohr T, Andersen JL, Biering-Sorensen F, et al (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35:1–16

    Article  CAS  PubMed  Google Scholar 

  • Morrison PR, Biggs RB, Booth FW (1989) Daily running for 2 wk and mRNAs for cytochrome c and alpha-actin in rat skeletal muscle. Am J Physiol 257:C936–C939

    Article  CAS  PubMed  Google Scholar 

  • Mujika I, Padilla S (2001) Muscular characteristics of detraining in humans. Med Sci Sports Exerc 33: 1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375:577–581

    Article  CAS  PubMed  Google Scholar 

  • Munoz KA, Aannestad A, Tischler ME, Henriksen EJ (1994) Skeletal muscle protein content and synthesis after voluntary running and subsequent unweighting. Metabolism 43:994–999

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Shimomura Y, Yoshimura A, Sokabe M, Fujitsuka N (1998) Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim Biophys Acta 1381:113–122

    Article  CAS  PubMed  Google Scholar 

  • Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90:1936–1942

    Article  CAS  PubMed  Google Scholar 

  • Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88:359–363

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Lopez-Cepero JM, Sanchez del Pino MJ (2001) Skeletal muscle and aging. Front Biol Sci 6: D26–D44

    CAS  Google Scholar 

  • Neufer PD, Dohm GL (1993) Exercise Induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am J Physiol 265:C1597–C1603

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402:483–487

    Article  CAS  PubMed  Google Scholar 

  • Nindl BC, Kraemer WJ, Marx JO, et al (2001) Overnight responses of the circulating IGF-I system after acute, heavy-resistance exercise. J Appl Physiol 90:1319–1326

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DS, Zheng D, Anderson WK, Dohm GL, Houmard JA (1999) Effect of endurance exercise on myosin heavy chain gene regulation in human skeletal muscle. Am J Physiol 276:R414–R419

    PubMed  Google Scholar 

  • Ohira Y, Yoshinaga T, Ohara M, et al (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87:1776–1785

    Article  CAS  PubMed  Google Scholar 

  • Olson EN (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Olson EN, Williams RS (2000) Calcineurin signaling and muscle remodeling. Cell 101:689–692

    Article  CAS  PubMed  Google Scholar 

  • Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Pages G, Milanini J, Richard DE, et al (2000) Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci 902:187–200

    Article  CAS  PubMed  Google Scholar 

  • Panenic R, Gardiner PF (1998) The case for adaptability of the neuromuscular junction to endurance exercise training. Can J Appl Physiol 23:339–360

    Article  CAS  PubMed  Google Scholar 

  • Parolin ML, Spriet LL, Hultman E, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ (2000a) Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol Endocrinol Metab 278:E522–E534

    Article  CAS  PubMed  Google Scholar 

  • Parolin ML, Spriet LL, Hultman E, Matsos MP, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ (2000b) Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia. Am J Physiol Endocrinol Metab 279:E752–E761

    Article  CAS  PubMed  Google Scholar 

  • Pastoris O, Boschi F, Verri M, Baiardi P, Felzani G, Vecchiet J, Dossena M, Catapano M (2000) The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects. Exp Gerontol 35:95–104

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev 7:18–31

    CAS  PubMed  Google Scholar 

  • Pedraza N, Solanes G, Carmona MC, et al (2000) Impaired expression of the uncoupling protein-3 gene in skeletal muscle during lactation: fibrates and troglitazone reverse lactation-induced downregulation of the uncoupling protein-3 gene. Diabetes 49:1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL (2001) Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab 281: E1151–E1158

    Article  CAS  PubMed  Google Scholar 

  • Pette D (1998) Training effects on the contractile apparatus. Acta Physiol Scand 162:367–376

    Article  CAS  PubMed  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50: 500–509

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273:E99–E107

    CAS  PubMed  Google Scholar 

  • Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124

    CAS  PubMed  Google Scholar 

  • Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32:769–777

    Article  CAS  PubMed  Google Scholar 

  • Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814

    Article  CAS  PubMed  Google Scholar 

  • Prince FP, Hikida RS, Hagerman FC, Staron RS, Allen WH (1981) A morphometric analysis of human muscle fibers with relation to fiber types and adaptations to exercise. J Neurol Sci 49:165–179

    Article  CAS  PubMed  Google Scholar 

  • Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW (1995) Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 78:2033–2038

    Article  CAS  PubMed  Google Scholar 

  • Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R (1995a) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance trained athletes. Am J Physiol 269:C619–C625

    Article  CAS  PubMed  Google Scholar 

  • Puntschart A, et al (1995b) Immediate-early-(IEG) and heat-shock-protein-(HSP) gene expression after a single bout of exercise in humans. USGEB, Experientia 51:A22(S05–S25)

    Google Scholar 

  • Puntschart A, Vogt M, Widmer HR, Hoppeler H, Billeter R (1996) Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand 157:411–417

    Article  CAS  PubMed  Google Scholar 

  • Puntschart A, Wey E, Jostarndt K, Vogt M, Wittwer M, Widmer HR, Hoppeler H, Billeter R (1998) Expression of fos and jun genes in human skeletal muscle after exercise. Am J Physiol 43:C129–C137

    Article  Google Scholar 

  • Rabinovich RA, Ardite E, Troosters T, et al (2001) Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1114–1118

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Lee K, Choi W, et al (1994) Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. Eur J Appl Physiol 69: 392–395

    Article  CAS  Google Scholar 

  • Ray CA, Gracey KH (1997) Augmentation of exercise-induced muscle sympathetic nerve activity during muscle heating. J Appl Physiol 82:1719–1725

    Article  CAS  PubMed  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pfluegers Arch 404: 1–9

    Article  CAS  Google Scholar 

  • Reynafarje B (1962) Myoglobin content and enzymatic activity of muscle and altitude adaptation. J Appl Physiol 17:301–305

    Article  CAS  PubMed  Google Scholar 

  • Rich C, Cafarelli E (2000) Submaximal motor unit firing rates after 8 wk of isometric resistance training. Med Sci Sports Exerc 32:190–196

    Article  CAS  PubMed  Google Scholar 

  • Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275:26765–26771

    Article  CAS  PubMed  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96:1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD (1999) Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am J Physiol 277:H2247–H2252

    CAS  PubMed  Google Scholar 

  • Richardson RS, Newcomer SC, Noyszewski EA (2001) Skeletal muscle intracellular PO(2) assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol 91:2679–2685

    Article  CAS  PubMed  Google Scholar 

  • Ricoy JR, Encinas AR, Cabello A, Madero S, Arenas J (1998) Histochemical study of the vastus lateralis muscle fibre types of athletes. J Physiol BioChem 54:41–47

    CAS  PubMed  Google Scholar 

  • Riva C, Chevrier C, Pasqual N, Saks V, Rossi A (2001) Bcl-2/Bax protein expression in heart, slow-twitch and fast-twitch muscles in young rats growing under chronic hypoxia conditions. Mol Cell BioChem 226:9–16

    Article  CAS  PubMed  Google Scholar 

  • Rooyackers OE, Nair KS (1997) Hormonal regulation of human muscle protein metabolism. Annu Rev Nutr 17: 457–485

    Article  CAS  PubMed  Google Scholar 

  • Round JM, Barr FM, Moffat B, Jones DA (1993) Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. J Neurol.Sci 116:207–211

    Article  CAS  PubMed  Google Scholar 

  • Roussel D, Lhenry F, Ecochard L, Sempore B, Rouanet JL, Favier R (2000) Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle. Biochem J 350: 547–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder JW, Chibalin AV, Zierath JR (2001) Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand 171:249–257

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Goodyear LJ (2002) Invited Review. Intracellular signaling in contracting skeletal muscle. J Appl Physiol 93:369–383

    Article  CAS  PubMed  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–S145

    Article  CAS  PubMed  Google Scholar 

  • Saltin B (1986) Physiological adaptation to physical conditioning Old problems revisited. Acta Med Scand S711:11–24

    Google Scholar 

  • Sandri M (2002) Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care 5:249–253

    Article  PubMed  Google Scholar 

  • Schaub MC, Brunner UT, von Schulthess C, Neidhart M, Baumann H (1989) Adaptation of contractile proteins in human heart and skeletal muscles. BioMed Biochim Acta 48:S306–S312

    CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1994) Myosin isoforms in mammalian skeletal muscle. J Appl Physiol 77:493–501

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    Article  CAS  PubMed  Google Scholar 

  • Schlienger JL, Pradignac A, Grunenberger F (1995) Nutrition of the elderly: a challenge between facts and needs. Horm Res 43:46–51

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen P, Wagenmakers AJ, Marken Lichtenbelt WD, Saris WH, Westerterp KR (2000) Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes 49: 640–646

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen P, Hoppeler H, Billeter R, Bakker A, Pendergast D (2001a) Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Int J Obes Relat Metab Disord 25:449–456

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen P, Saris WH, Hesselink MK (2001b) An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of non-esterified fatty acids inside the mitochondrial matrix. FASEB J 13: 2497–502

    Article  Google Scholar 

  • Schultz E, McCormick KM (1994) Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123: 213–257

    Article  CAS  PubMed  Google Scholar 

  • Seals DR, Enoka RM (1989) Sympathetic activation is associated with increases in EMG during fatiguing exercise. J Appl Physiol 66:88–95

    Article  CAS  PubMed  Google Scholar 

  • Seedorf U, Leberer E, Kirschbaum BJ, Pette D (1986) Neural control of gene expression in skeletal muscle Effect of chronic stimulation on lactate dehydrogenase isoenzymes and citrate synthase. Biochem J 239:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y (1997) Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 239:840–844

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  CAS  PubMed  Google Scholar 

  • Sherwood DJ, Dufresne SD, Markuns JF, et al (1999) Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Am J Physiol 276:E870–E878

    CAS  PubMed  Google Scholar 

  • Simi B, Sempore B, Mayet MH, Favier RJ (1991) Additive effects of training and high-fat diet on energy metabolism during exercise. J Appl Physiol 71:197–203

    Article  CAS  PubMed  Google Scholar 

  • Smol E, Zernicka E, Czarnowski D, Langfort J (2001) Lipoprotein lipase activity in skeletal muscles of the rat: effects of denervation and tenotomy. J Appl Physiol 90:954–960

    Article  CAS  PubMed  Google Scholar 

  • Snow MH (1990) Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec 227:437–446

    Article  CAS  PubMed  Google Scholar 

  • Sobel BE, Kaufman S (1970) Enhanced RNA polymerase activity in skeletal muscle undergoing hypertrophy. Arch BioChem Biophys. 137:469–476

    Article  CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S, Miyazaki H, Gutkind JS (2001) MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 287:292–300

    Article  CAS  PubMed  Google Scholar 

  • Soeta C, Suzuki M, Suzuki S, Naito K, Tachi C, Tojo H (2001) Possible role for the c-ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats. Dev Growth Differ 43:155–164

    Article  CAS  PubMed  Google Scholar 

  • Sorkin A, Waters CM (1993) Endocytosis of growth factor receptors. Bioessays 15:375–382

    Article  CAS  PubMed  Google Scholar 

  • Sreter FA, Lopez JR, Alamo L, Mabuchi K, Gergely J (1987) Changes in intracellular ionized Ca concentration associated with muscle fiber type transformation. Am J Physiol 253:C296–C300

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    Article  CAS  PubMed  Google Scholar 

  • Staron RS, Karapondo DL, Kraemer WJ, et al (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE, Mcconell GK (2002) Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282: E688–E694

    Article  CAS  PubMed  Google Scholar 

  • Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, Pette D (1999) Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol 277:C1044–C1049

    Article  CAS  PubMed  Google Scholar 

  • Stroka DM, Burkhardt T, Desbaillets, et al (2001) HIF-1 is expressed in normoxic tissue and displays an organ specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    Article  CAS  PubMed  Google Scholar 

  • Strollo F (1999) Hormonal changes in humans during spaceflight. Adv Space Biol Med 7:99–129

    Article  CAS  PubMed  Google Scholar 

  • Sutrave P, Kelly AM, Hughes SH (1990) ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev 4:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Hood DA (1996) Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions. J Biol Chem 271:27285–27291

    Article  CAS  PubMed  Google Scholar 

  • Talmadge RJ (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23:661–679

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Kerins DM, Hao Q, Inagami T, Vaughan DE (1998) The urokinase-type plasminogen activator receptor mediates tyrosine phosphorylation of focal adhesion proteins and activation of mitogen-activated protein kinase in cultured endothelial cells. J Biol Chem 273:18268–18272

    Article  CAS  PubMed  Google Scholar 

  • Terrados N, Melichna J, Sylven C, Jansson E, Kaijser L (1988) Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 57:203–209

    Article  CAS  Google Scholar 

  • Terrados N, Jansson E, Sylven C, Kaijser L (1990) Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 68:2369–2372

    Article  CAS  PubMed  Google Scholar 

  • Thomason DB, Booth FW (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Thompson HS, Scordilis SP, Clarkson PM, Lohrer WA (2001) A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle. Acta Physiol Scand 171:187–193

    Article  CAS  PubMed  Google Scholar 

  • Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D (2000) Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89:143–152

    Article  CAS  PubMed  Google Scholar 

  • Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1:637–639

    Article  CAS  PubMed  Google Scholar 

  • Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D (2002a) Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle. Biochem Biophys Res Commun 294:301–308

    Article  CAS  PubMed  Google Scholar 

  • Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D (2002b) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283: E66–E72

    Article  CAS  PubMed  Google Scholar 

  • Tuominen JA, Ebeling P, Laquier FW, Heiman ML, Stephens T, Koivisto VA (1997) Serum leptin concentration and fuel homeostasis in healthy man. Eur J Clin Invest 27:206–211

    Article  CAS  PubMed  Google Scholar 

  • Tyml K, Mathieu-Costello O (2001) Structural and functional changes in the microvasculature of disused skeletal muscle. Front Biol Sci 6:D45–D52

    CAS  Google Scholar 

  • Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • VandenBorne K, Elliott MA, Walter GA, et al (1998) Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve 21:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25:17–25

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al (1997) Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 99:2416–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 91:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182

    Article  CAS  PubMed  Google Scholar 

  • Walters EH, Stickland NC, Loughna PT (2000) The expression of the myogenic regulatory factors in denervated and normal muscles of different phenotypes. J Muscle Res Cell Motil 21:647–653

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER (1984) The pathway for oxygen. Harvard University Press, Cambridge, MA, p 100

    Google Scholar 

  • Weibel ER (2002) Physiology: the pitfalls of power laws. Nature 417:131–132

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R (1995) Interventions based on the possibility that oxidative stress contributes to sarcopenia. J Gerontol A Biol Sci Med Sci 50 [Spec No]:157–161

    PubMed  Google Scholar 

  • Weindruch R, Kayo T, Lee CK, Prolla TA (2002) Gene expression profiling of aging using DNA microarrays. Mech Ageing Dev 123:177–193

    Article  CAS  PubMed  Google Scholar 

  • Weis J, Kaussen M, Calvo S, Buonanno A (2000) Denervation induces a rapid nuclear accumulation of MRF4 in mature myofibers. Dev Dyn 218:438–451

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH, Bauer C (2001) Oxygen sensing: “hydroxy” translates “oxy”. News Physiol Sci 16:195–196

    CAS  PubMed  Google Scholar 

  • Widegren U, Ryder JW, Zierath JR (2001) Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction. Acta Physiol Scand 172:227–238

    Article  CAS  PubMed  Google Scholar 

  • Widrick JJ, Romatowski JG, Bain JL, Trappe SW, Trappe TA, Thompson JL, Costill DL, Riley DA, Fitts RH (1997) Effect of 17 days of bed rest on peak isometric force and unloaded shortening velocity of human soleus fibers. Am J Physiol 273:C1690–C1699

    Article  CAS  PubMed  Google Scholar 

  • Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH (1999) Effect of a 17-day spaceflight on contractile properties of human soleus muscle fibres. Res J Physiol 516:915–930

    CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  CAS  PubMed  Google Scholar 

  • Williamson DL, Gallagher PM, Carroll CC, Raue U, Trappe SW (2001) Reduction in hybrid single muscle fiber proportions with resistance training in humans. J Appl Physiol 91:1955–1961

    Article  CAS  PubMed  Google Scholar 

  • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219–2226

    Article  CAS  PubMed  Google Scholar 

  • Wittwer M, Flück M, Hoppeler H, Muller S, Desplanches D, Billeter R (2002a) Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 16:884–886

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528: 221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong TS, Booth FW (1990) Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J Appl Physiol 69:1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Rothermel B, Kanatous S, et al (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20:6414–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Kanatous SB, Thurmond FA, et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Buja LM, Scarpulla RC, McMillin JB (1997) Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci U S A. 94:11399–11404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Salmons S, Jarvis J, Booth FW (1995) Increased muscle carnitine palmitoyltransferase II mRNA after increased contractile activity. A J Physiol Endocrinol Metabol 31:E277–E281

    Article  Google Scholar 

  • Yan Z, Salmons S, Dang YI, Hamilton MT, Booth FW (1996) Increased contractile activity decreases RNA-protein interaction in the 3′-UTR of cytochrome c mRNA. Am J Physiol 271:C1157–C1166

    Article  CAS  PubMed  Google Scholar 

  • Yarasheski KE, Campbell JA, Smith K, Rennie MJ, Holloszy JO, Bier DM (1992) Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol 262:E261–E267

    CAS  PubMed  Google Scholar 

  • Yarasheski KE, Zachweija JJ, Angelopoulos TJ, Bier DM (1993a) Short-term growth hormone treatment does not increase muscle protein synthesis in experienced weight lifters. J Appl Physiol 74:3073–3076

    Article  CAS  PubMed  Google Scholar 

  • Yarasheski KE, Zachwieja JJ, Bier DM (1993b) Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol 265:E210–E214

    CAS  PubMed  Google Scholar 

  • Yu M, Blomstrand E, Chibalin AV, Krook A, Zierath JR (2001) Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. J Physiol 536:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 14:1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 17:5085–5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF (2000) UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 279:E622–E629

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Bunn HF (1999) Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir Physiol 115:239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Hu Y, Metzler B, Xu Q (1998) Signal transduction in arteriosclerosis: mechanical stress-activated MAP kinases in vascular smooth muscle cells. Int J Mol Med 1:827–834

    CAS  PubMed  Google Scholar 

  • Zumstein A, Mathieu O, Howald H, Hoppeler H (1983) Morphometric analysis of the capillary supply in skeletal muscles of trained and untrained subjects-its limitations in muscle biopsies. Pfluegers Arch 397:277–283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlagb

About this chapter

Cite this chapter

Flück, M., Hoppeler, H. (2003). Molecular basis of skeletal muscle plasticity-from gene to form and function. In: Amara, S.G., et al. Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-002-0004-7

Download citation

  • DOI: https://doi.org/10.1007/s10254-002-0004-7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00228-4

  • Online ISBN: 978-3-540-36207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics