Skip to main content

Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 120

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 120))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker M, Anderson WA, Hammond RL, DiMeo F Jr, McCullum J, Staum M, Velchik M, Brown WE, Gale D, Salmons S, Stephenson LW (1987a) Oxygen consumption of chronically stimulated skeletal muscle. J Thorac Cardiovasc Surg 94:702–709

    PubMed  Google Scholar 

  • Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1987b) Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324–327

    PubMed  Google Scholar 

  • Acker MA, Mannion JD, Brown WE, Salmons S, Henriksson J, Bitto T, Gale DR, Hammond R, Stephenson LW (1987c) Canine diaphragm muscle after 1 yr of continuous electrical stimulation: its potential as a myocardial substitute. J Appl Physiol 62:1264–1270

    PubMed  Google Scholar 

  • Aigner S, Pette D (1990) In situ hybridization of slow myosin heavy chain mRNA in normal and transforming rabbit muscles with the use of a nonradioactively labeled cRNA. Histochemistry 95:11–18

    Article  PubMed  Google Scholar 

  • Aigner S, Pette D (1992) Fast-to-slow transition in myosin heavy chain expression of rabbit muscle fibres induced by chronic low-frequency stimulation. In: El Haj AJ (ed) Molecular biology of muscle. Symp Soc Exp Biol 46 (in press)

    Google Scholar 

  • Al-Amood WS, Lewis DM (1987) The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat. J Physiol (Lond) 392:377–395

    PubMed  Google Scholar 

  • Al-Amood WS, Buller AJ, Pope R (1973) Long-term stimulation of cat fast-twitch skeletal muscle. Nature 244:225–227

    Article  PubMed  Google Scholar 

  • Al-Amood WS, Lewis DM, Schmalbruch H (1991) Effect of chronic electrical stimulation on contractile properties of long-term denervated rat skeletal muscle. J Physiol (Lond) 441:243–256

    PubMed  Google Scholar 

  • Annex BH, Kraus WE, Dohm GL, Williams RS (1991) Mitochondrial biogenesis in striated muscles: rapid induction of citrate synthase mRNA by nerve stimulation. Am J Physiol 260:C266–C270

    PubMed  Google Scholar 

  • Armstrong RB (1990) Initial events in exercise-induced muscular injury. Med Sci Sports Exerc 22:429–435

    PubMed  Google Scholar 

  • Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lømo T (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10:153–160

    PubMed  Google Scholar 

  • Baeten C, Spaans F, Fluks A (1988) An implanted neuromuscular stimulator for fecal incontinence following previously implanted gracilis muscle. Report of a case. Dis Colon Rectum 31:134–137

    PubMed  Google Scholar 

  • Baeten CGMI, Konsten J, Spaans F, Habets F, Soeters P (1991) Dynamic graciloplasty for fecal incontinence. In: Carraro U, Salmons S (eds) Basic and applied myology: perspectives for the 90's. Unipress, Padova, pp 293–300

    Google Scholar 

  • Baldwin KM, Herrick RE, Ilyina-Kakueva E, Oganov VS (1990) Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle. FASEB J 4:79–83

    PubMed  Google Scholar 

  • Bär A, Pette D (1988) Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 235:153–155

    Article  PubMed  Google Scholar 

  • Bär A, Simoneau J-A, Pette D (1989) Altered expression of myosin light chain isoforms in chronically stimulated fast-twitch muscle of the rat. Eur J Biochem 178:591–594

    Article  PubMed  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle short-ening. J Gen Physiol 50:197–218

    Article  PubMed  Google Scholar 

  • Bárány M, Close RI (1971) The transformation of myosin in cross-innervated rat muscles. J Physiol (Lond) 213:455–474

    PubMed  Google Scholar 

  • Barnard RJ, Edgerton VR, Furukawa T, Peter JB (1971) Histochemical, biochemical and contractile properties of red, white, and intermediate fibers. Am J Physiol 220:410–414

    PubMed  Google Scholar 

  • Beitner R (1990) Regulation of carbohydrate metabolism by glucose 1,6-bisphosphate in extrahepatic tissues; comparison with fructose 2,6-bisphosphate. Int J Biochem 22:553–557

    Article  PubMed  Google Scholar 

  • Booth FW (1988) Perspectives on molecular and cellular exercise physiology. J Appl Physiol 65:1461–1471

    PubMed  Google Scholar 

  • Booth FW, Seider MJ (1979) Early change in skeletal muscle protein synthesis after limb immobilization of rats. J Appl Physiol 47:974–977

    PubMed  Google Scholar 

  • Breitbart RE, Nadal-Ginard B (1986) Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. J Mol Biol 188:313–324

    Article  PubMed  Google Scholar 

  • Breitbart RE, Nadal-Ginard B (1987) Developmentally induced, muscle-specific trans factors control the differential splicing of alternative and constitutive troponin T exons. Cell 49:793–803

    Article  PubMed  Google Scholar 

  • Briggs FN, Lee KF, Feher JJ, Wechsler AS, Ohlendieck K, Campbell, K (1990) Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett 259:269–272

    Article  PubMed  Google Scholar 

  • Briggs MM, Schachat F (1989) N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J Mol Biol 206:245–249

    Article  PubMed  Google Scholar 

  • Briggs MM, Lin JJ-C, Schachat FH (1987) The extent of amino-terminal heterogeneity in rabbit fast skeletal muscle troponin T. J Muscle Res Cell Motil 8:1–12

    Article  PubMed  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Three myosin adenosine triphosphatase systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18:670–672

    PubMed  Google Scholar 

  • Brown J, Salmons S (1981) Percutaneous control of an implantable muscle stimulator via an optical link. J Biomed Eng 3:206–208

    PubMed  Google Scholar 

  • Brown JMC, Henriksson J, Salmons S (1989) Restoration of fast muscle characteristics following cessation of chronic stimulation: physiological, histochemical and metabolic changes during slow-to-fast transformation. Proc R Soc Lond [Biol] 235:321–346

    Google Scholar 

  • Brown MD, Cotter M, Hudlická O, Smith ME, Vrbová G (1973) The effect of long-term stimulation of fast muscles on their ability to withstand fatigue. J Physiol (Lond) 238:47–48P

    Google Scholar 

  • Brown MD, Cotter MA, Hudlická O, Vrbová G (1976) The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch 361:241–250

    Article  Google Scholar 

  • Brown WE, Salmons S, Whalen RG (1983) The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J Biol Chem 258:14686–14692

    PubMed  Google Scholar 

  • Brown WE, Salmons S, Whalen RG (1985) Mechanisms underlying the asynchronous replacement of myosin light chain isoforms during stimulation-induced fibre-type transformation of skeletal muscle. FEBS Lett 192:235–238

    Article  PubMed  Google Scholar 

  • Brownson C, Isenberg H, Brown W, Salmons S, Edwards Y (1988) Changes in skeletal muscle gene transcription induced by chronic stimulation. Muscle Nerve 11:1183–1189

    Article  PubMed  Google Scholar 

  • Brownson C, Little P, Jarvis JC, Salmons S (1992) Reciprocal changes in myosin isoform mRNAs of rabbit skeletal muscle in response to the initiation and cessation of chronic electrical stimulation. Muscle Nerve 15:694–700

    Article  PubMed  Google Scholar 

  • Buchegger A, Nemeth PM, Pette D, Reichmann H (1984) Effects of chronic stimulation on the metabolic heterogeneity of the fibre population in rabbit tibialis anterior muscle. J Physiol (Lond) 350:109–119

    PubMed  Google Scholar 

  • Buller AJ, Lewis DM (1965) Some observations on the effects of tenotomy in the rabbit. J Physiol (Lond) 178:326–342

    PubMed  Google Scholar 

  • Buller AJ, Pope R (1977) Plasticity in mammalian skeletal muscle. Philos Trans R Soc Lond [Biol] 278:295–305

    Google Scholar 

  • Burke RE, Levine DN, Zajac FE (1971) Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174:709–712

    PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol (Lond) 234:723–748

    PubMed  Google Scholar 

  • Carpentier A, Bourgeois I (eds) (1991) Cardiomyoplasty. Futura, Mount Kisco

    Google Scholar 

  • Carpentier A, Chachques J-C (1985) Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet 1:1267

    Article  Google Scholar 

  • Carpentier A, Chachques J-C, Grandjean P, Perier P, Mitz V, Bourgeois I (1985) Transformation d'un muscle squelettique par stimulation séquentielle progressive en vue de son utilisation comme substitut myocardique. CR Acad Sci Paris 301:581–586

    Google Scholar 

  • Carraro U, Catani C, Belluco S, Cantini M, Marchioro L (1986) Slow-like electro-stimulation switches on slow myosin in denervated fast muscle. Exp Neurol 94:537–553

    Article  PubMed  Google Scholar 

  • Carraro U, Catani C, Saggin L, Zrunek M, Szabolcs M, Gruber H, Streinzer W, Mayr W, Thoma H (1988) Isomyosin changes after functional electrostimulation of denervated sheep muscle. Muscle Nerve 11:1016–1028

    Article  PubMed  Google Scholar 

  • Carraro U, Catani C, Rizzi C, Belluco S, DallaLibera L, Danieli-Betto D, Miracoli G, Arpesella G, Mikus P, Cirillo M, Parlapiano M, Seni M, Pierangeli A (1991) The use of transplanted skeletal muscle for cardiac assistance. In: Maréchal G, Carraro U (eds) Muscle and motility. Intercept, Andover, pp 157–164

    Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297:504–506

    Article  PubMed  Google Scholar 

  • Chachques JC, Grandjean P, Schwartz K, Mihaileanu S, Fardeau M, Swynghedauw B, Fontaliran F, Romero N, Wisnewsky C, Perier P, Chauvaud S, Bourgeois I, Carpentier A (1988) Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function. Circulation 78:III–203–III–216

    Google Scholar 

  • Chi MM-Y, Hintz CS, Henriksson J, Salmons S, Hellendahl RP, Park JL, Nemeth PM, Lowry OH (1986) Chronic stimulation of mammalian muscle: enzyme changes in individual fibers. Am J Physiol 251:C633–C642

    PubMed  Google Scholar 

  • Chiu RC-J, Bourgeois I (eds) (1991) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco

    Google Scholar 

  • Ciesielski TE, Fukuda Y, Glenn WWL, Gorfien J, Jeffery K, Hogan JF (1983) Response of the diaphragm muscle to electrical stimulation of the phrenic nerve. J Neurosurg 58:92–100

    PubMed  Google Scholar 

  • Ciske PE, Faulkner JA (1985) Chronic electrical stimulation of nongrafted and grafted skeletal muscles in rats. J Appl Physiol 59:1434–1439

    PubMed  Google Scholar 

  • Clark BJ III, Acker MA, McCully K, Subramanian HV, Hammond RL, Salmons S, Chance B, Stephenson LW (1988) In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle. Am J Physiol 254:C258–C266

    PubMed  Google Scholar 

  • Cotter M, Hudlická O (1977) Effects of chronic stimulation on muscles in ageing rats. J Physiol (Lond) 266:102P–103P

    PubMed  Google Scholar 

  • Cotter M, Phillips P (1986) Rapid fast to slow fiber transformation in response to chronic stimulation of immobilized muscles of the rabbit. Exp Neurol 93:531–545

    Article  PubMed  Google Scholar 

  • Cotter M, Hudlická O, Pette D, Staudte H, Vrbová G (1972) Changes of capillary density and enzyme pattern in fast rabbit muscles during long-term stimulation. J Physiol (Lond) 230:34P–35P

    Google Scholar 

  • Cotter M, Hudlická O, Vrbová G (1973) Growth of capillaries during long-term activity in skeletal muscle. Bibl Anat 11:395–398

    PubMed  Google Scholar 

  • Cumming DV, O'Brien GA, Williamson HA, Dunn MJ, Pattison CW, Yacoub MH (1991) Analysis of gene expression at protein level in skeletal muscle used for cardiac assistance. In: Maréchal G, Carraro U (eds) Muscle and motility. Intercept, Andover, pp 165–168

    Google Scholar 

  • Dawson JM, Hudlická O (1989) The effect of long-term activity on the microvasculature of rat glycolytic skeletal muscle. Int J Microcirc Clin Exp 8:53–69

    PubMed  Google Scholar 

  • Donselaar Y, Eerbeek O, Kernell D, Verhey BA (1987) Fibre sizes and histochemical staining characteristics in normal and chronically stimulated fast muscle of cat. J Physiol (Lond) 382:237–254

    PubMed  Google Scholar 

  • Dubowitz V (1988) Responses of diseased muscle to electrical and mechanical intervention. In: Plasticity of the neuromuscular System, Ciba Found Symp 138. Wiley, Chichester, pp 240–255

    Google Scholar 

  • Düsterhöft S, Yablonka-Reuveni Z, Pette D (1991) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus, and tibialis anterior muscles. Differentiation 45:185–191

    Google Scholar 

  • Dux L, Green HJ, Pette D (1990) Chronic low-frequency stimulation of rabbit fast-twitch muscle induces partial inactivation of the sarcoplasmic reticulum Ca2+-ATPase and changes in its tryptic cleavage. Eur J Biochem 192:95–100

    Article  PubMed  Google Scholar 

  • Edwards RHT, Jones DA, Newham DJ (1982) Low-frequency stimulation and changes in human muscle contractile properties. J Physiol (Lond) 328:29P–30P

    Google Scholar 

  • Eerbeek O, Kernell D, Verhey BA (1984) Effects of fast and slow patterns of tonic long-term stimulation on contractile properties of fast muscle in cat. J Physiol (Lond) 352:73–90

    PubMed  Google Scholar 

  • Eisenberg BR, Salmons S (1981) The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. A stereological study. Cell Tissue Res 220:449–471

    Article  PubMed  Google Scholar 

  • Eisenberg BR, Brown JMC, Salmons S (1984) Restoration of fast muscle characteristics following cessation of chronic stimulation. The ultrastructure of slow-to-fast transformation. Cell Tissue Res 238:221–230

    Article  PubMed  Google Scholar 

  • Eken T, Gundersen K (1988) Chronic electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles. J Physiol (Lond) 402:651–669

    PubMed  Google Scholar 

  • Eriksson E, Haggmark T, Kiessling TH, Karlsson J (1981) Effect of electrical stimulation on human skeletal muscle. Int J Sports Med 2:18–22

    PubMed  Google Scholar 

  • Essig DA, Devol DL, Bechtel PJ, Trannel TJ (1991) Expression of embryonic myosin heavy chain mRNA in stretched adult chicken skeletal muscle. Am J Physiol 260:C1325–C1331

    PubMed  Google Scholar 

  • Ferguson AS, Stone HE, Roessmann U, Burke M, Tisdale E, Mortimer JT (1989) Muscle plasticity: comparison of 30-Hz burst with 10-Hz continuous stimulation. J Appl Physiol 66:1143–1151

    PubMed  Google Scholar 

  • Fitzsimons RB, Hoh JFY (1983) Myosin isoenzymes in fast-twitch and slow-twitch muscles of normal and dystrophic mice. J Physiol (Lond) 343:539–550

    PubMed  Google Scholar 

  • Franchi LL, Murdoch A, Brown WE, Mayne CN, Elliott L, Salmons S (1990) Subcellular localization of newly incorporated myosin in rabbit fast skeletal muscle undergoing stimulation-induced type transformation. J Muscle Res Cell Motil 11:227–239

    Article  PubMed  Google Scholar 

  • Frey M, Thoma H, Gruber H, Stöhr H, Huber L, Havel M, Steiner E (1984) The chronically stimulated muscle as an energy source for artificial organs. Preliminary results of a basic study in sheep. Eur Surg Res 16:232–237

    PubMed  Google Scholar 

  • Frey M, Thoma H, Gruber H, Stöhr H, Havel M (1986) The chronically stimulated psoas muscle as an energy source for artificial organs: an experimental study in sheep. In: Chiu R C-J (ed) Biomechanical cardiac assist: cardiomyplasty and muscle-powered devices. Futura, Mount Kisko, pp 179–191

    Google Scholar 

  • Frischknecht R, Vrbová G (1991) Adaptation of rat extensor digitorum longus to overload and increased activity. Pflügers Arch 419:319–326

    Article  Google Scholar 

  • Gillis JM (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta 811:97–145

    PubMed  Google Scholar 

  • Goldberg AL (1969) Protein turnover in skeletal muscle: I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J Biol Chem 244:3217–3222

    PubMed  Google Scholar 

  • Goldspink DF (1977) The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol (Lond) 264:267–282

    PubMed  Google Scholar 

  • Goldspink G (1985) Malleability of the motor system: a comparative approach. J Exp Biol 115:375–391

    PubMed  Google Scholar 

  • Gordon T, Stein RB, Martin T (1990) Physiological and histochemical changes in human muscle produced by electrical stimulation after spinal cord injury. J Neurol Sci 98 (suppl):141 (Abstr553)

    Google Scholar 

  • Gorza L (1990) Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and antimyosin monoclonal antibodies. J Histochem Cytochem 38:257–265

    PubMed  Google Scholar 

  • Gorza L, Gundersen K, Lømo T, Schiaffino S, Westgaard RH (1988) Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol (Lond) 402:627–649

    PubMed  Google Scholar 

  • Gould N, Donnermeyer D, Pope M, Ashigaka I (1982) Transcutaneous muscle stimulation as a method to retard disuse atrophy. Clin Orthop 164:215–220

    PubMed  Google Scholar 

  • Grandjean PA, Bakels N, Berne E, Leinders R, Siekmeyer G, Urban R, Bourgeois IM (1990) Pulse generator for biomechanical cardiac assistance by counter-pulsation technique. In: Chiu RC-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 281–290

    Google Scholar 

  • Green HJ, Düsterhöft S, Dux L, Pette D (1990) Time dependent changes in metabolites of energy metabolism in low-frequency stimulated rabbit fast-twitch muscle. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 617–628

    Google Scholar 

  • Green HJ, Cadefau J, Pette D (1991) Altered glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels in low-frequency stimulated rabbit fast-twitch muscle. FEBS Lett 282:107–109

    Article  PubMed  Google Scholar 

  • Green HJ, Düsterhöft S, Dux L, Pette D (1992) Metabolite patterns related to exhaustion, recovery, and transformation of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 420:359–366

    Article  Google Scholar 

  • Gregoric MV, Valencic V, Zupan A, Klemen A (1988) Effects of electrical stimulation on muscles of patients with progressive muscular disease. In: Wallinga WH, Boom BK, de Vries J (eds) Electrophysiological kinesiology. Proceedings of the 7th Congress of the International Society of Electrophysiological Kinesiology. Excerpta Medica, Amsterdam, pp 385–389

    Google Scholar 

  • Gregory P, Low RB, Stirewalt WS (1986) Changes in skeletal-muscle myosin isoenzymes with hypertrophy and exercise. Biochem J 238:55–63

    PubMed  Google Scholar 

  • Gregory P, Gagnon J, Essig DA, Reid SK, Prior G, Zak R (1990) Differential regulation of actin and myosin isoenzyme synthesis in functionally overloaded skeletal muscle. Biochem J 265:525–532

    PubMed  Google Scholar 

  • Grodins F, Osborne S, Johnson F, Arano S, Ivy A (1944) The effect of appropriate electrical stimulation on atrophy of denervated skeletal muscle in the rat. Am J Physiol 142:221–230

    Google Scholar 

  • Gros G, Dodgson SJ (1988) Velocity of CO2 exchange in muscle and liver. Annu Rev Physiol 50:669–694

    Article  PubMed  Google Scholar 

  • Gundersen K, Leberer E, Lømo T, Pette D, Staron RS (1988) Fibre types, calcium-sequestering proteins and metabolic enzymes in denervated and chronically stimulated muscles of the rat. J Physiol (Lond) 398:177–189

    PubMed  Google Scholar 

  • Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on α-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59:194–201

    PubMed  Google Scholar 

  • Guth L, Samaha FH (1969) Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol 25:138–152

    Article  PubMed  Google Scholar 

  • Gutmann E, Guttmann L (1944) The effect of galvanic exercise on denervated and reinnervated muscles in the rabbit. J Neurol Neurosurg Psychiatry 7:7–17

    Google Scholar 

  • Härtner K-T, Pette D (1990) Effects of chronic low-frequency stimulation on troponin I and troponin C isoforms in rabbit fast-twitch muscle. Eur J Biochem 188:261–267

    Article  PubMed  Google Scholar 

  • Härtner K-T, Kirschbaum BJ, Pette D (1989) The multiplicity of troponin T isoforms. Normal rabbit muscles and effects of chronic stimulation. Eur J Biochem 179:31–38

    Article  PubMed  Google Scholar 

  • Havenith MG, van der Veen FH, Glatz JFC, Lucas C, Schrijvers-van Schendel JMC, Penn OCKM, Wellens HJJ (1990) Monitoring of muscle fiber type of canine latissimus dorsi muscle during chronic electric stimulation by enzyme-and immunohistochemistry. In: Chiu RC-J, Bourgois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 53–61

    Google Scholar 

  • Heilig A, Pette D (1980) Changes induced in the enzyme activity pattern by electrical stimulation of fast-twitch muscle. In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 409–420

    Google Scholar 

  • Heilig A, Pette D (1983) Changes in transcriptional activity of chronically stimulated fast twitch muscle. FEBS Lett 151:211–214

    Article  PubMed  Google Scholar 

  • Heilig A, Pette D (1988) Albumin in rabbit skeletal muscle. Origin, distribution and regulation by contractile activity. Eur J Biochem 171:503–508

    Article  PubMed  Google Scholar 

  • Heilig A, Seedorf K, Seedorf U, Pette D (1984) Transcriptional and translational control of myosin light chain expression in adult muscle. In: Eppenberger HM, Perriard J-C (eds) Developmental processes in normal and diseased muscle. Karger, Basel, pp 182–186 (Experimental biology and medicine, vol 9)

    Google Scholar 

  • Heilmann C, Pette D (1979) Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation. Eur J Biochem 93:437–446

    Article  PubMed  Google Scholar 

  • Heilmann C, Pette D (1980) Molecular transformations of sarcoplasmic reticulum in chronically stimulated fast-twitch muscle In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 421–440

    Google Scholar 

  • Heilmann C, Müller W, Pette D (1981) Correlation between ultrastructural and functional changes in sarcoplasmic reticulum during chronic stimulation of fast muscle. J Membr Biol 59:143–149

    Article  PubMed  Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA 79:7243–7247

    PubMed  Google Scholar 

  • Hennig R, Lømo T (1987) Effects of chronic stimulation on the size and speed of long-term denervated and innervated rat fast and slow skeletal muscles. Acta Physiol Scand 130:115–131

    PubMed  Google Scholar 

  • Henriksson J, Chi MM-Y, Hintz CS, Young DA, Kaiser KK, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    PubMed  Google Scholar 

  • Henriksson J, Salmons S, Chi MM-Y, Hintz CS, Lowry OH (1988) Chronic stimulation of mammalian muscle: changes in metabolite concentrations in individual fibers. Am J Physiol 255:C543–C551

    PubMed  Google Scholar 

  • Henriksson J, Salmons S, Lowry OH (1990) Chronic stimulation of mammalian muscle: enzyme and metabolite changes in homogenates and individual fibers. In: Chiu RC-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 9–24

    Google Scholar 

  • Hilton SM, Jeffries MG, Vrbová G (1970) Functional specialization of the vascular bed of the soleus muscle. J Physiol (Lond) 206:543–562

    PubMed  Google Scholar 

  • Hoffman RK, Gambke B, Stephenson LW, Rubinstein NA (1985) Myosin transitions in chronic stimulation do not involve embryonic isozymes. Muscle Nerve 8:796–805

    Article  PubMed  Google Scholar 

  • Hoh JFY, Chow CJ (1983) The effect of the loss of weight-bearing function on the isomyosin profile and contractile properties of rat skeletal muscles. In: Kidman AD, Tomkins JK, Morris CA, Cooper NA (eds) Molecular pathology of nerve and muscle. Humana, Clifton, pp 371–384

    Google Scholar 

  • Hood DA, Parent G (1991) Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am J Physiol 260:C832–C840

    PubMed  Google Scholar 

  • Hood DA, Pette D (1989) Chronic long-term stimulation creates a unique metabolic enzyme profile in rabbit fast-twitch muscle. FEBS Lett 247:471–474

    Article  PubMed  Google Scholar 

  • Hood DA, Zak R, Pette D (1989) Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome c oxidase subunits. Eur J Biochem 179:275–280

    Article  PubMed  Google Scholar 

  • Hoppeler H (1990) The range of mitochondrial adaptation in muscle fibers In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 567–586

    Google Scholar 

  • Hoppeler H, Hudlická O, Uhlmann E (1987) Relationship between mitochondria and oxygen consumption in isolated cat muscles. J Physiol (Lond) 385:661–675

    PubMed  Google Scholar 

  • Hudlická O (1984) Development of microcirculation: capillary growth and adaptation. In: Renkin EM, Michel CC, Geiger SR (eds) Handbook of physiology, sect 2: the cardiovascular system. Williams and Wilkins, Baltimore MD, pp 165–216

    Google Scholar 

  • Hudlická O, Price S (1990) The role of blood flow and/or muscle hypoxia in capillary growth in chronically stimulated fast muscles. Pflügers Arch 417:67–72

    Article  Google Scholar 

  • Hudlická O, Tyler KR (1984) The effect of long-term high-frequency stimulation on capillary density and fibre types in rabbit fast muscles. J Physiol (Lond) 353:435–445

    PubMed  Google Scholar 

  • Hudlická O, Brown M, Cotter M, Smith M, Vrbová G (1977) The effect of long-term stimulation of fast muscles on their blood flow, metabolism and ability to withstand fatigue. Pflügers Arch 369:141–149

    Article  Google Scholar 

  • Hudlická O, Tyler KR, Aitman T (1980) The effect of long-term electrical stimulation on fuel uptake and performance in fast skeletal muscles. In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 401–408

    Google Scholar 

  • Hudlická O, Tyler KR, Srihari T, Heilig A, Pette D (1982a) The effect of different patterns of long-term stimulation on contractile properties and myosin light chains in rabbit fast muscles. Pflügers Arch 393:164–170

    Article  Google Scholar 

  • Hudlická O, Dodd L, Renkin EM, Gray SD (1982b) Early changes in fiber profile and capillary density in long-term stimulated muscles. Am J Physiol 243:H528–H535

    PubMed  Google Scholar 

  • Hudlická O, Aitman T, Heilig A, Leberer E, Tyler KR, Pette D (1984) Effects of different patterns of long-term stimulation on blood flow, fuel uptake and enzyme activities in rabbit fast skeletal muscle. Pflügers Arch 402:306–311

    Article  Google Scholar 

  • Hudlická O, Cotter MA, Cooper J (1986) The effect of long-term electrical stimulation on capillary supply and metabolism in fast skeletal muscle. In: Nix WA, Vrbová G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York, pp 21–32

    Google Scholar 

  • Hudlická O, Hoppeler H, Uhlmann E (1987) Relationship between the size of the capillary bed and oxidative capacity in various cat skeletal muscles. Pflügers Arch 410:369–375

    Article  Google Scholar 

  • Ianuzzo D, Patel P, Chen V, O'Brien P, Williams C (1977) Thyroidal trophic influence on skeletal muscle myosin. Nature 270:74–76

    Article  PubMed  Google Scholar 

  • Ianuzzo CD, Hamilton N, O'Brien PJ, Desrosiers C, Chiu R (1990a) Biochemical transformation of canine skeletal muscle for use in cardiac-assist devices. J Appl Physiol 68:1481–1485

    PubMed  Google Scholar 

  • Ianuzzo CD, Hamilton N, O'Brien PJ, Dionisopoulos T, Salerno T, Chiu RC-J (1990b) Biochemical characteristics of cardiac and transformed canine skeletal muscle. In: Chiu RC-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 25–40

    Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V (1986) All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231:597–600

    PubMed  Google Scholar 

  • Jeffery S, Kelly CD, Carter N, Kaufmann M, Termin A, Pette D (1990) Chronic stimulation-induced effects point to a coordinated expression of carbonic anhydrase III and slow myosin heavy chain in skeletal muscle. FEBS Lett 262:225–227

    Article  PubMed  Google Scholar 

  • Jolesz F, Sréter FA (1981) Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol 43:531–552

    Article  PubMed  Google Scholar 

  • Jorgensen AO, Jones LR (1986) Localization of phospholamban in slow but not fast canine skeletal muscle fibers. An immunocytochemical and biochemical study. J Biol Chem 261:3775–3781

    PubMed  Google Scholar 

  • Kaplove KA (1987) Reanalysis: impulse activity and fiber type transformation. Muscle Nerve 10:375–376

    Article  PubMed  Google Scholar 

  • Kaufmann M, Simoneau J-A, Veerkamp JH, Pette D (1989) Electrostimulation-induced increases in fatty acid-binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett 245:181–184

    Article  PubMed  Google Scholar 

  • Kelly AM (1978) Satellite cells and myofiber growth in the rat soleus and extensor digitorum muscles. Dev Biol 65:1–10

    Article  PubMed  Google Scholar 

  • Kernell D, Eerbeek O (1989) Physiological effects of different patterns of chronic stimulation on muscle properties. In: Rose FC, Jones R (eds) Neuromuscular stimulation. Demos, New York, pp 193–200

    Google Scholar 

  • Kernell D, Eerbeek O, Verhey BA, Donselaar Y (1987a) Effects of physiological amounts of high-and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb: I. Speed-and force-related properties. J Neurophysiol 58:598–613

    PubMed  Google Scholar 

  • Kernell D, Donselaar Y, Eerbeek O (1987b) Effects of physiological amounts of high-and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb: II. Endurance-related properties. J Neurophysiol 58:614–627

    PubMed  Google Scholar 

  • Kirschbaum BJ, Pette D (1988) Low-frequency stimulation of rat fast-twitch muscle induces rapid, reversible changes in myosin heavy chain expression. In: Carraro U (ed) Sarcomeric and non-sarcomeric muscles: basic and applied research prospects for the 90's. Unipress, Padova, pp 337–342

    Google Scholar 

  • Kirschbaum BJ, Heilig A, Härtner K-T, Pette D (1989a) Electrostimulation-induced fast-to-slow transitions of myosin light and heavy chains in rabbit fast-twitch muscle at the mRNA level. FEBS Lett 243:123–126

    Article  PubMed  Google Scholar 

  • Kirschbaum BJ, Simoneau J-A, Bär A, Barton PJR, Buckingham ME, Pette D (1989b) Chronic stimulation-induced changes of myosin light chains at the mRNA and protein levels in rat fast-twitch muscle. Eur J Biochem 179:23–29

    Article  PubMed  Google Scholar 

  • Kirschbaum BJ, Simoneau J-A, Pette D (1989c) Dynamics of myosin expression during the induced transformation of adult rat fast-twitch muscle In: Stockdale F, Kedes L (eds) Cellular and molecular biology of muscle development. Liss, New York, pp 461–469 (UCLA symposia on molecular and cellular biology, new series, vol 93)

    Google Scholar 

  • Kirschbaum BJ, Kucher H-B, Termin A, Kelly AM, Pette D (1990a) Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle. J Biol Chem 265:13974–13980

    PubMed  Google Scholar 

  • Kirschbaum BJ, Schneider S, Izumo S, Mahdavi V, Nadal-Ginard B, Pette D (1990b) Rapid and reversible changes in myosin heavy chain expression in response to increased neuromuscular activity of rat fast-twitch muscle. FEBS Lett 268:75–78

    Article  PubMed  Google Scholar 

  • Klug G, Reichmann H, Pette D (1983a) Rapid reduction in parvalbumin concentration during chronic stimulation of rabbit fast twitch muscle. FEBS Lett 152:180–182

    Article  PubMed  Google Scholar 

  • Klug G, Wiehrer W, Reichmann H, Leberer E, Pette D (1983b) Relationships between early alterations in parvalbumin, sarcoplasmic reticulum and metabolic enzymes in chronically stimulated fast twitch muscle. Pflügers Arch 399:280–284

    Article  Google Scholar 

  • Klug GA, Houston ME, Stull JT, Pette D (1986) Decrease in myosin light chain kinase activity of rabbit fast muscle by chronic stimulation. FEBS Lett 200:352–354

    Article  PubMed  Google Scholar 

  • Klug GA, Leberer E, Leisner E, Simoneau J-A, Pette D (1988) Relationship between parvalbumin content and the speed of relaxation in chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 411:126–131

    Article  Google Scholar 

  • Kucher H-B, Kirschbaum BJ, Kelly AM, Pette D (1988) Modulation of thyroid hormone-induced effects on the expression of myosin heavy chain isoforms in rat fast-twitch muscle by chronic low-frequency nerve stimulation In: Carraro U (ed) Sarcomeric and non-sarcomeric muscles: basic and applied research prospects for the 90's. Unipress, Padova, pp 25–28

    Google Scholar 

  • Kwong WH, Vrbová G (1981) Effects of low-frequency electrical stimulation on fast and slow muscles of the rat. Pflügers Arch 391:200–207

    Article  Google Scholar 

  • Laufer R, Changeux J-P (1989) Activity-dependent regulation of gene expression in muscle and neuronal cells. Mol Neurobiol 3:1–53

    PubMed  Google Scholar 

  • Lawrence JC Jr, Krsek JA, Salsgiver WJ, Hiken JF, Salmons S, Smith RL (1986) Phosphorylase kinase isozymes in normal and electrically stimulated skeletal muscles. Am J Physiol 250:C84–C89

    PubMed  Google Scholar 

  • Leberer E, Pette D (1986a) Immunochemical quantitation of sarcoplasmic reticulum Ca-ATPase, of calsequestrin and of parvalbumin in rabbit skeletal muscles of defined fiber composition. Eur J Biochem 156:489–496

    Article  PubMed  Google Scholar 

  • Leberer E, Pette D (1986b) Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochem J 235:67–73

    PubMed  Google Scholar 

  • Leberer E, Pette D (1990) Influence of neuromuscular activity upon the expression of parvalbumin in mammalian skeletal muscle. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 497–508

    Google Scholar 

  • Leberer E, Seedorf U, Pette D (1986) Neural control of gene expression in skeletal muscle. Ca-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem J 239:295–300

    PubMed  Google Scholar 

  • Leberer E, Härtner K-T, Pette D (1987a) Reversible inhibition of sarcoplasmic reticulum Ca-ATPase by altered neuromuscular activity in rabbit fast-twitch muscle. Eur J Biochem 162:555–561

    Article  PubMed  Google Scholar 

  • Leberer E, Staron RS, Gundersen K, Lømo T, Pette D (1987b) Control of parvalbumin expression in rat skeletal muscle by motor-unit specific activity patterns. In: Norman AW, Vanaman TC, Means AR (eds) Calcium binding proteins in health and disease. Academic, New York, pp 287–289

    Google Scholar 

  • Leberer E, Härtner K-T, Brandl CJ, Fujii J, Tada M, MacLennan DH, Pette D (1989) Slow/cardiac sarcoplasmic reticulum Ca-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twich muscle. Eur J Biochem 185:51–54

    Article  PubMed  Google Scholar 

  • Lenman AJR, Tulley FM, Vrbová G, Dimitrijevic MR, Towle JA (1989) Muscle fatigue in some neurological disorders. Muscle Nerve 12:938–942

    Article  PubMed  Google Scholar 

  • Lieber RL (1986) Skeletal muscle adaptability: III. muscle properties following chronic electrical stimulation. Dev Med Child Neurol 28:662–670

    PubMed  Google Scholar 

  • Lømo T (1989) Long-term effects of altered activity on skeletal muscle. Biomed Biochim Acta 48:S432–S444

    PubMed  Google Scholar 

  • Lømo T, Westgaard RH (1974) Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond [Biol] 187:99–103

    Google Scholar 

  • Lømo T, Westgaard RH, Engebretsen L (1980) Different stimulation patterns affect contractile properties of denervated rat soleus muscles. In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 297–309

    Google Scholar 

  • Mabuchi K, Szvetko D, Pintér K, Sréter FA (1982) Type IIB to IIA fiber transformation in intermittently stimulated rabbit muscles. Am J Physiol 242:C373–C381

    PubMed  Google Scholar 

  • Mabuchi K, Sréter FA, Gergely J (1990) Myosin and sarcoplasmic reticulum Ca2+-ATPase isoforms in electrically stimulated rabbit fast muscle. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 445–462

    Google Scholar 

  • Magovern GJ, Park SB, Magovern GJ Jr, Benckart DH, Tullis G, Rozar E, Kao R, Christlieb I (1986) Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurism. Ann Thorac Surg 41:116

    PubMed  Google Scholar 

  • Magovern GJ, Heckler FR, Park SB, Christlieb IY, Magovern GJ Jr, Kao RL, Benckart DH, Tullis G, Rozar E, Liebler GA, Burkholder JA, Maher TD (1987) Paced latissimus dorsi used for dynamic cardiomyoplasty of left ventricular aneurysms. Ann Thorac Surg 44:379–388

    PubMed  Google Scholar 

  • Magovern GJ, Heckler FR, Park SB, Christlieb IY, Liebler GA, Burkholder JA, Maher TD, Benckart DH, Magovern GJ Jr, Kao RL (1988) Paced skeletal muscle for dynamic cardiomyoplasty. Ann Thorac Surg 45:614–619

    PubMed  Google Scholar 

  • Magovern GJ, Park SB, Christlieb IY, Magovern GJ Jr, Kao RL (1990) Paced conditioned latissimus dorsi for cardiac assist. In: Chiu R C-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 199–208

    Google Scholar 

  • Maier A, Pette D (1987) The time course of glycogen depletion in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 408:338–342

    Article  Google Scholar 

  • Maier A, Gambke B, Pette D (1986) Degeneration-regeneration as a mechanism contributing to the fast to slow conversion of chronically stimulated fast-twitch rabbit muscle. Cell Tissue Res 244:635–643

    Article  PubMed  Google Scholar 

  • Maier A, Gorza L, Schiaffino S, Pette D (1988) A combined histochemical and immunohistochemical study on the dynamics of fast to slow fiber transformation in chronically stimulated rabbit muscle. Cell Tissue Res 254:59–68

    Article  PubMed  Google Scholar 

  • Mannion JD, Bitto T, Hammond RL, Rubinstein NA, Stephenson LW (1986) Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ Res 58:298–304

    PubMed  Google Scholar 

  • Mannion JD, Acker MA, Hammond RL, Faltemeyer W, Duckett S, Stephenson LW (1987) Power output of skeletal muscle ventricles in circulation: short-term studies. Circulation 76:155–162

    PubMed  Google Scholar 

  • Mannion JD, Shannon J, Chen W, Brown WE, Gale DR (1990) Skeletal muscle-powered assistance for the heart: assessment of a goat model. In: Chiu R C-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 117–127

    Google Scholar 

  • Maréchal G, Biral D, Beckers-Bleukx G, Colson-van Schoor M (1989) Subunit composition of native myosin isoenzymes of some striated mammalian muscles. Biomed Biochim Acta 48:S417–S421

    PubMed  Google Scholar 

  • Marzocchi M, Brouillette RT, Klemka-Walden LM, Heller SL, Weese-Mayer DE, Brozanski BS, Caliendo J, Daood M, Ilbawi MN, Hunt CE (1990) Effects of continuous low-frequency pacing on immature canine diaphragm. J Appl Physiol 69:892–898

    PubMed  Google Scholar 

  • Mastri C, Salmons S, Thomas GH (1982) Early events in the response of fast skeletal muscle to chronic low-frequency stimulation. Polyamine biosynthesis and protein phosphorylation. Biochem J 206:211–219

    PubMed  Google Scholar 

  • Matsushita S, Pette D (1992) Inactivation of sarcoplasmic-reticulum Ca2+-ATPase in low-frequency-stimulated muscle results from a modification of the active site. Biochem J 284: (in press)

    Google Scholar 

  • Matsushita S, Dux L, Pette D (1991) Distribution of active and inactive (nonphosphorylating) sarcoplasmic reticulum Ca2+-ATPase molecules in low-frequency stimulated rabbit fast-twitch muscle. FEBS Lett 294:203–206

    Article  PubMed  Google Scholar 

  • McMinn RM, Vrbová G (1967) Motoneurone activity as a cause of degeneration in the soleus muscle of the rabbit. Q J Exp Physiol 52:411–415

    Google Scholar 

  • Milner Brown HS, Miller RG (1988) Muscle strengthening through electrical stimulation combined with low resistance weights in patients with neuromuscular disorders. Arch Phys Med Rehabil 69:20–24

    Google Scholar 

  • Mokrusch T, Engelhardt A, Eichhorn K-F, Prischenk G, Prischenk H, Sack G, Neundorfer B (1990) Effects of long-impulse electrical stimulation on atrophy and fibre type composition of chronically denervated fast rabbit muscle. J Neurol 237:29–34

    Article  PubMed  Google Scholar 

  • Mokrusch T, Carraro U, Reichmann H, Engelhardt A, Neundorfer B (1991) Different reactions of denervated fast and slow rabbit muscles to a new type of electrical stimulation: a histochemical and biochemical study. In: Carraro U, Salmons S (eds) Basic and applied myology: perspectives for the 90's. Unipress, Padova, pp 173–182

    Google Scholar 

  • Munsat TL, McNeal D, Waters R (1976) Effects of nerve stimulation on human muscle. Arch Neurol 33:608–617

    PubMed  Google Scholar 

  • Müntener M, Rowlerson AM, Berchtold MW, Heizmann CW (1987) Changes in concentration of the calcium-binding parvalbumin in cross-reinnervated rat muscles. Comparison of biochemical with physiological and histochemical parameters. J Biol Chem 262:465–469

    PubMed  Google Scholar 

  • Myrhage R, Hudlická O (1978) Capillary growth in chronically stimulated adult skeletal muscle as studied by intravital microscopy and histological methods in rabbits and rats. Microvasc Res 16:73–90

    Article  PubMed  Google Scholar 

  • Nemeth PM (1982) Electrical stimulation of denervated muscle prevents decreases in oxidative enzymes. Muscle Nerve 5:134–139

    Article  PubMed  Google Scholar 

  • Nix WA (1990) Effects of intermittent high frequency electrical stimulation on denervated EDL muscle of rabbit. Muscle Nerve 13:580–585

    Article  PubMed  Google Scholar 

  • Nix WA, Dahm M (1987) The effect of isometric short-term electrical stimulation on denervated muscle. Muscle Nerve 10:136–143

    Article  PubMed  Google Scholar 

  • Nix WA, Reichmann H, Schröder MJ (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch rabbit muscle. Pflügers Arch 405:141–147

    Article  Google Scholar 

  • Nwoye L, Mommaerts WFHM (1981) The effects of thyroid status on some properties of rat fast-twitch muscle. J Muscle Res Cell Motil 2:307–320

    Article  PubMed  Google Scholar 

  • Ohlendieck K, Briggs FN, Lee KF, Wechsler AW, Campbell KP (1991) Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle. Eur J Biochem 202:739–747

    Article  PubMed  Google Scholar 

  • Peckham PH, Mortimer JT, van der Meulen JP (1973) Physiologic and metabolic changes in white muscle of cat following induced exercise. Brain Res 50:424–429

    Article  PubMed  Google Scholar 

  • Peckham PH, Mortimer JT, Marsolais EB (1975) Alteration in the force and fatiguability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin Orthop 114:326–334

    Google Scholar 

  • Periasamy M, Gregory P, Martin BJ, Stirewalt WS (1989) Regulation of myosin heavy-chain gene expression during skeletal-muscle hypertrophy. Biochem J 257:691–698

    PubMed  Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE (1972) Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11:2627–2633

    Article  PubMed  Google Scholar 

  • Pette D (1984) Activity-induced fast to slow transitions in mammalian muscle. Med Sci Sports Exerc 16:517–528

    PubMed  Google Scholar 

  • Pette D (1985) Regulation of phenotype expression in skeletal muscle fibers by increased contractile activity. In: Saltin B (ed) Biochemistry of exercise VI. Human Kinetics, Champaign, pp 3–26 (International series on sport sciences, vol 16)

    Google Scholar 

  • Pette D (1990) Dynamics of stimulation-induced fast-to-slow transitions in protein isoforms of the thick and thin filament. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 415–428

    Google Scholar 

  • Pette D (1991) Effects of chronic electrostimulation on muscle gene expression. Semin Thorac Cardiovasc Surg 3:101–105

    PubMed  Google Scholar 

  • Pette D (1992) Fiber transformation and fiber replacement in chronically stimulated muscle. J Heart Lung Transplant (in press)

    Google Scholar 

  • Pette D, Düsterhöft S (1992) Altered gene expression in fast-twitch muscle induced by chronic low-frequency stimulation. Am J Physiol 262:R333–R338

    PubMed  Google Scholar 

  • Pette D, Heilmann C (1977) Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation. Basic Res Cardiol 72:247–253

    Article  PubMed  Google Scholar 

  • Pette D, Schnez U (1977) Coexistence of fast and slow type myosin light chains in single muscle fibres during transformation as induced by long term stimulation. FEBS Lett 83:128–130

    Article  PubMed  Google Scholar 

  • Pette D, Simoneau J-A (1990) Chronic stimulation-induced alterations in phenotype expression and functional properties of skeletal muscle. In: Chiu R C-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 129–137

    Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  Google Scholar 

  • Pette D, Tyler KR (1983) Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation. J Physiol (Lond) 338:1–9

    PubMed  Google Scholar 

  • Pette D, Vrbová G (1985) Invited review: neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    Article  PubMed  Google Scholar 

  • Pette D, Staudte HW, Vrbová G (1972) Physiological and biochemical changes induced by long-term stimulation of fast muscle. Naturwissenschaften 59:469–470

    Article  Google Scholar 

  • Pette D, Smith ME, Staudte HW, Vrbová G (1973) Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflügers Arch 338:257–272

    Article  Google Scholar 

  • Pette D, Ramirez BU, Müller W, Simon R, Exner GU, Hildebrand R (1975) Influence of intermittent long-term stimulation on contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles. Pflügers Arch 361:1–7

    Article  Google Scholar 

  • Pette D, Müller W, Leisner E, Vrbová G (1976) Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscle of the rabbit. Pflügers Arch 364:103–112

    Article  Google Scholar 

  • Pette D, Düsterhöft S, Green HJ, Hofmann S (1991) Early metabolic events in chronic stimulation induced fast to slow transitions. In: Carraro U, Salmons S (eds) Basic and applied myology: perspectives for the 90's. Unipress, Padova, pp 55–62

    Google Scholar 

  • Pluskal MG, Sréter FA (1983) Correlation between protein phenotype and gene expression in adult rabbit fast twitch muscles undergoing a fast to slow fiber transformation in response to electrical stimulation in vivo. Biochem Biophys Res Commun 113:325–331

    Article  PubMed  Google Scholar 

  • Ramirez BU, Pette D (1974) Effects of long-term electrical stimulation on sarcoplasmic reticulum of fast rabbit muscle. FEBS Lett 49:188–190

    Article  PubMed  Google Scholar 

  • Reichmann H, Nix A (1985) Changes of energy metabolism, myosin light chain composition, lactate dehydrogenase isozyme pattern and fibre type distribution of denervated fast-twitch muscle from rabbit after low frequency stimulation. Pflügers Arch 405:244–249

    Article  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404:1–9

    Article  Google Scholar 

  • Reichmann H, Wasl R, Simoneau J-A, Pette D (1991) Enzyme activities of fatty acid oxidation and the respiratory chain in chronically stimulated fast-twitch muscle of the rabbit. Pflügers Arch 418:572–574

    Article  Google Scholar 

  • Riley DA, Allin EF (1973) The effects of inactivity, programmed stimulation, and denervation on the histochemistry of skeletal muscle fiber types. Exp Neurol 40:391–413

    Article  PubMed  Google Scholar 

  • Romanul FCA, Sréter FA, Salmons S, Gergely J (1974) The effect of a changed pattern of activity on histochemical characteristics of muscle fibers. In: Exploratory concepts in muscular dystrophy II. Excerpta Med Int Congr Ser 333:344–348

    Google Scholar 

  • Roy RK, Mabuchi K, Sarkar S, Mis C, Sréter FA (1979) Changes in tropomyosin subunit pattern in chronic electrically stimulated rabbit fast muscles. Biochem Biophys Res Commun 89:181–187

    PubMed  Google Scholar 

  • Rubinstein N, Mabuchi K, Pepe F, Salmons S, Gergely J, Sréter F (1978) Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol 79:252–261

    Article  PubMed  Google Scholar 

  • Russell DH (1983) Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis. Proc Natl Acad Sci USA 80:1318–1321

    PubMed  Google Scholar 

  • Rutherford OM, Jones DA (1988) Contractile properties and fatiguability of the human adductor pollicis muscle and first interosseus: a comparison of the effects of two chronic stimulation patterns. J Neurol Sci 85:319–331

    Article  PubMed  Google Scholar 

  • Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4:94–105

    Article  PubMed  Google Scholar 

  • Salmons S, Jarvis JC (1990) The working capacity of skeletal muscle transformed for use in a cardiac assist role. In: Chiu RC-J, Bourgeois I (eds) Transformed muscle for cardiac assist and repair. Futura, Mount Kisco, pp 89–104

    Google Scholar 

  • Salmons S, Sréter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    Article  Google Scholar 

  • Salmons S, Vrbová G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201:535–549

    PubMed  Google Scholar 

  • Salmons S, Gale DR, Sréter FA (1978) Ultrastructural aspects of the transformation of muscle fibre type by long term stimulation: changes in Z discs and mitochondria. J Anat 127:17–31

    PubMed  Google Scholar 

  • Samaha FJ, Guth L, Albers RW (1970) Phenotypic differences between the actomyosin ATPase of the three fiber types of mammalian skeletal muscle. Exp Neurol 26:120–125

    Article  PubMed  Google Scholar 

  • Sarzala MG, Szymanska G, Wiehrer W, Pette D (1982) Effects of chronic stimulation at low frequency on the lipid phase of sarcoplasmic reticulum in rabbit fast-twitch muscle. Eur J Biochem 123:241–245

    Article  PubMed  Google Scholar 

  • Schachat FH, Williams RS, Schnurr CA (1988) Coordinate changes in fast thin filament and Z-line protein expression in the early response to chronic stimulation. J Biol Chem 263:13975–13978

    PubMed  Google Scholar 

  • Schachat F, Briggs MM, Williamson EK, McGinnis H (1990) Expression of fast thin filament proteins. Defining fiber archetypes in a molecular continuum. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 279–291

    Google Scholar 

  • Schiaffino S, Ausoni S, Gorza L, Saggin L, Gundersen K, Lømo T (1988) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres. Acta Physiol Scand 134:575–576

    PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lømo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10:197–205

    Article  PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Ausoni S, Bottinelli R, Reggiani C, Larson L, Edström L, Gundersen K, Lømo T (1990) Muscle fiber types expressing different myosin heavy chain isoforms. Their functional properties and adaptive capacity. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 329–341

    Google Scholar 

  • Schmalbruch H, Al-Amood WS, Lewis DM (1991) Morphology of long-term denervated rat soleus muscle and the effect of chronic electrical stimulation. J Physiol (Lond) 441:233–242

    PubMed  Google Scholar 

  • Schmitt T, Pette D (1985) Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle. FEBS Lett 188:341–344

    Article  PubMed  Google Scholar 

  • Schmitt TL, Pette D (1990) Correlations between troponin-T and myosin heavy chain isoforms in normal and transforming rabbit muscle fibers. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 293–302

    Google Scholar 

  • Schmitt TL, Pette D (1991) Fiber type-specific distribution of parvalbumin in rabbit skeletal muscle — a quantitative immunohistochemical and microbiochemical study. Histochemistry 96:459–465

    Article  PubMed  Google Scholar 

  • Schultz E (1984) A quantitative study of satellite cells in regenerated soleus and extensor digitorum longus muscles. Anat Rec 208:501–506

    Article  PubMed  Google Scholar 

  • Schultz E, Darr KC (1990) The role of satellite cells in adaptive or induced fiber transformations. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 667–679

    Google Scholar 

  • Schwarz G, Leisner E, Pette D (1983) Two telestimulation systems for chronic indirect muscle stimulation in caged rabbits and mice. Pflügers Arch 398:130–133

    Article  Google Scholar 

  • Scott OM, Vrbová G, Dubowitz V (1984) Effects of nerve stimulation on normal and diseased human muscle. In: Serratrice G, Gros D, Desnuelle C, Gastaut J-L, Peloissier J-F, Pouge J, Schiano A (eds) Neuromuscular diseases. Raven, New York, pp 583–587

    Google Scholar 

  • Scott OM, Vrbová G, Hyde SA, Dubowitz V (1985) Effects of chronic low frequency electrical stimulation on normal human tibialis anterior muscle. J Neurol Neurosurg Psychiatry 48:774–781

    PubMed  Google Scholar 

  • Scott OM, Vrbová G, Hyde SA, Dubowitz V (1986) Responses of muscles of patients with Duchenne muscular dystrophy to chronic electrical stimulation. J Neurol Neurosurg Psychiatry 49:1427–1434

    PubMed  Google Scholar 

  • Scott OM, Hyde SA, Vrbová G, Dubowitz V (1990) Therapeutic possibilities of low frequency electrical stimulation in children with Duchenne muscular dystrophy. J Neurol Sci 95:171–182

    Article  PubMed  Google Scholar 

  • Seccia M, Tortora A, Menconi C, Cavina E (1991) Electrostimulated neosphincter after abdominoperineal resection for rectal cancer: functional results in 41 cases. In: Carraro U, Salmons S (eds) Basic and applied myology: perspectives for the 90's. Unipress, Padova, pp 301–304

    Google Scholar 

  • Seedorf K, Seedorf U, Pette D (1983) Coordinate expression of alkali and DTNB myosin light chains during transformation of rabbit fast muscle by chronic stimulation. FEBS Lett 158:321–324

    Article  PubMed  Google Scholar 

  • Seedorf U, Leberer E, Kirschbaum BJ, Pette D (1986) Neural control of gene expression in skeletal muscle. Effects of chronic stimulation on lactate dehydrogenase isoenzymes and citrate synthase. Biochem J 239:115–120

    PubMed  Google Scholar 

  • Simoneau J-A, Pette D (1988a) Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse, rat, guinea pig, and rabbit. Pflügers Arch 412:86–92

    Google Scholar 

  • Simoneau J-A, Pette D (1988b) Specific effects of low-frequency stimulation upon energy metabolism in tibialis anterior muscles of mouse, rat, guinea pig and rabbit. Reprod Nutr Develop 28 (3 B):781–784

    Google Scholar 

  • Simoneau J-A, Pette D (1989) Species-specific responses of muscle lactate dehydrogenase isozymes to increased contractile activity. Pflügers Arch 413:679–681

    Article  Google Scholar 

  • Simoneau J-A, Kaufmann M, Härtner K-T, Pette D (1989) Relations between chronic stimulation-induced changes in contractile properties and the Ca2+-sequestering system of rat and rabbit fast-twitch muscles. Pflügers Arch 414:629–633

    Article  Google Scholar 

  • Simoneau J-A, Hood DA, Pette D (1990) Species-specific responses in enzyme activities of anaerobic and aerobic energy metabolism to increased contractile activity. In: Taylor AW, Gollnick PD, Green HJ, Ianuzzo CD, Noble EG, Metivier G Sutton JR (eds) Biochemistry of exercise VII. Human Kinetics Champaign, pp 95–103 (International series on sport sciences, vol 21)

    Google Scholar 

  • Simoneau J-A, Kaufmann M, Pette D (1992) Asynchronous increases in oxidative capacity and resistance to fatigue of chronically stimulated muscles of rat and rabbit. J Physiol (Lond) (in press)

    Google Scholar 

  • Sketelji J, Črne-Finderle N, Ribarič S, Brzin M (1991) Interactions between intrinsic regulation and neural modulation of acetylcholinesterase in fast and slow skeletal muscles. Cell Mol Neurobiol 11:35–54

    Article  PubMed  Google Scholar 

  • Sréter FA, Gergely J, Salmons S, Romanul F (1973) Synthesis by fast muscle of myosin light chains characteristic of slow muscle in response to long-term stimulation. Nature New Biol 241:17–19

    PubMed  Google Scholar 

  • Sréter FA, Romanul FCA, Salmons S, Gergely J (1974) The effect of a changed pattern of activity on some biochemical characteristics of muscle. In: Exploratory concepts in muscular dystrophy II. Excerpta Med Int Congr Ser 333:338–343

    Google Scholar 

  • Sréter FA, Elzinga M, Mabuchi K (1975) The N-methylhistidine content of myosin in stimulated and cross-reinnervated skeletal muscles of the rabbit. FEBS Lett 57:107–111

    Article  PubMed  Google Scholar 

  • Sréter FA, Mabuchi K, Köver A, Gesztelyi I, Nagy Z, Furka I (1980) Effect of chronic stimulation on cation distribution and membrane potential in fast-twitch muscles of rabbit. In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 441–451

    Google Scholar 

  • Sréter FA, Pintér K, Jolesz F, Mabuchi K (1982) Fast to slow transformation of fast muscles in response to long-term phasic stimulation. Exp Neurol 75:95–102

    Article  PubMed  Google Scholar 

  • Sréter FA, Lopez JR, Alamao L, Mabuchi K, Gergely J (1987) Changes in intracellular ionized Ca concentration associated with muscle fiber type transformation. Am J Physiol 253:C296–C300

    PubMed  Google Scholar 

  • Staron RS (1991) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in single human muscle fibers. Histochemistry 96:21–24

    Article  PubMed  Google Scholar 

  • Staron RS, Pette D (1986) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry 86:19–23

    Article  PubMed  Google Scholar 

  • Staron RS, Pette D (1987a) Nonuniform myosin expression along single fibers of chronically stimulated and contralateral rabbit tibialis anterior muscles. Pflügers Arch 409:67–73

    Article  Google Scholar 

  • Staron RS, Pette D (1987b) The multiplicity of myosin light and heavy chain combinations in histochemically typed single fibres. Rabbit soleus muscle. Biochem J 243:687–693

    PubMed  Google Scholar 

  • Staron RS, Pette D (1987c) The multiplicity of myosin light and heavy chain combinations in histochemically typed single fibres. Rabbit tibialis anterior muscle. Biochem J 243:695–699

    PubMed  Google Scholar 

  • Staron RS, Gohlsch B, Pette D (1987) Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 408:444–450

    Article  Google Scholar 

  • Sweeney HL, Kushmerick MJ, Mabuchi K, Sréter FA, Gergely J (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263:9034–9039

    PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyoamines. Annu Rev Biochem 53:749–790

    Article  PubMed  Google Scholar 

  • Tada M, Inui M (1983) Regulation of calcium transport by the ATPase-phospholamban system. J Mol Cell Cardiol 15:565–575

    Article  PubMed  Google Scholar 

  • Termin A, Pette D (1990) Electrophoretic separation by an improved method of fast myosin HCIIb-, HCIId-, and HCIIa-based isomyosins with specific alkali light chain combinations. FEBS Lett 275:165–167

    Article  PubMed  Google Scholar 

  • Termin A, Pette D (1991) Myosin heavy chain-based isomyosins in developing, adult fast-twitch and slow-twitch muscles. Eur J Biochem 195:577–584

    Article  PubMed  Google Scholar 

  • Termin A, Pette D (1992) Changes in myosin heavy-chain isoform synthesis of chronically stimulated rat fast-twitch muscle. Eur J Biochem 204:569–573

    Article  PubMed  Google Scholar 

  • Termin A, Staron RS, Pette D (1989a) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453–457

    Article  PubMed  Google Scholar 

  • Termin A, Staron RS, Pette D (1989b) Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles — A single fiber study. Eur J Biochem 186:749–754

    Article  PubMed  Google Scholar 

  • Thomason DB, Booth FW (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68:1–12

    Article  PubMed  Google Scholar 

  • Tian L-M, Feng D-P (1990) The interaction of thyroidectomy with spinal cord transection or cross-innervation in their effects on muscle phenotypic characteristics. Chin J Physiol Sci 6:1–12

    Google Scholar 

  • Tyler KR, Wright AJA (1980) Light weight portable stimulators for stimulation of skeletal muscles at different frequencies and for cardiac pacing. J Physiol (Lond) 307:6P–7

    Google Scholar 

  • Underwood LE, Williams RS (1987) Pretranslational regulation of myoglobin gene expression. Am J Physiol 252:C450–C453

    PubMed  Google Scholar 

  • Valenčič V, Vodovnik L, Štefančič M, Jelnikar M (1985) Functional electrical stimulation of denervated muscles. In: Carraro U, Angelini C (eds) Functional electrostimulation of neurones and muscles. CLEUP, Padova, pp 99–102

    Google Scholar 

  • Velenčič V, Vodovnik L, Štefančič M, Jelnikar T (1986) Improved motor performance due to chronic stimulation of denervated tibialis anterior muscle. Muscle Nerve 9:612–617

    Article  PubMed  Google Scholar 

  • Vandenburgh HH, Kaufman S (1980) In vitro skeletal muscle hypertrophy and Na pump activity. In: Pette D (ed) Plasticity of muscle. De Gruyter, Berlin, pp 491–506

    Google Scholar 

  • Vrbová G (1963) The effect of motoneurone activity on the speed of contraction of striated muscle. J Physiol (Lond) 169:513–526

    PubMed  Google Scholar 

  • Vrbová G (1966) Factors determining the speed of contraction of striated muscle. J Physiol (Lond) 185:17P–18P

    Google Scholar 

  • Vrbová G (1987) Modification of muscle properties induced by activity: possible applications for treatment. In: Rose C, Jones R (eds) Multiple Sclerosis: immunological and therapeutic aspects. Libbey, London, pp 149–153

    Google Scholar 

  • Vrbová G, Pette D (1987) Reanalysis: impulse activity and fiber-type transformation: a reply. Muscle Nerve 10:569

    Article  PubMed  Google Scholar 

  • Vrbová G, Dimitrijevic MM, Partridge M, Halter J, Verhagen-Metman L (1987) Reversal of increased muscle fatigue in paraplegic patients by electrical stimulation. 17th meeting of the Society of Neuroscience

    Google Scholar 

  • Weber FE, Pette D (1988) Contractile activity enhances the synthesis of hexokinase II in rat skeletal muscle. FEBS Lett 238:71–73

    Article  PubMed  Google Scholar 

  • Weber FE, Pette D (1990a) Rapid up-and down-regulation of hexokinase II in rat skeletal muscle in response to altered contractile activity. FEBS Lett 261:291–293

    Article  PubMed  Google Scholar 

  • Weber FE, Pette D (1990b) Changes in free and bound forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur J Biochem 191:85–90

    Article  PubMed  Google Scholar 

  • Westgaard RH, Lømo T (1988) Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat. J Neurosci 8:4415–4426

    PubMed  Google Scholar 

  • Wetzel P, Liebner T, Gros G (1990) Carbonic anhydrase inhibition and calcium transients in soleus fibers. FEBS Lett 267:66–70

    Article  PubMed  Google Scholar 

  • Wiehrer W, Pette D (1983) The ratio between intrinsic 115kDa and 30kDa peptides as a marker of fibre type-specific sarcoplasmic reticulum in mammalian muscles. FEBS Lett 158:317–320

    Article  PubMed  Google Scholar 

  • Wilkinson JM, Grand RJA (1978a) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35

    Article  PubMed  Google Scholar 

  • Wilkinson JM, Grand RJA (1978b) The amino-acid sequence of chicken fast-skeletal-muscle troponin I. Eur J Biochem 82:493–501

    Article  PubMed  Google Scholar 

  • Williams NS, Hallan RI, Koeze TH, Watkins ES (1989) Construction of a neorectum and neoanal sphincter following previous proctocolectomy. Br J Surg 76:1191–1194

    PubMed  Google Scholar 

  • Williams NS, Hallan RI, Koeze T, Pilot M-A, Watkins ES (1990) Construction of neoanal sphincter by transposition of the gracilis muscle and prolonged neuromuscular stimulation for the treatment of faecal incontinence. Ann R Coll Surg Engl 72:108–113

    PubMed  Google Scholar 

  • Williams P, Watt P, Bicik V, Goldspink G (1986) Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers. Exp Neurol 93:500–509

    Article  PubMed  Google Scholar 

  • Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle. J Biol Chem 261:12390–12394

    Google Scholar 

  • Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mellor J (1986) Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem 261:376–380

    Google Scholar 

  • Williams RS, Garcia-Moll M, Mellor J, Salmons S, Harlan W (1987) Adaptation of skeletal muscle to increased contractile activity. Expression of nuclear genes encoding mitochondrial proteins. J Biol Chem 262:2764–2767

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Pette, D., Vrbová, G. (1992). Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 120. Reviews of Physiology, Biochemistry and Pharmacology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036123

Download citation

  • DOI: https://doi.org/10.1007/BFb0036123

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55364-9

  • Online ISBN: 978-3-540-47039-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics