Skip to main content
Log in

In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances osteogenic differentiation and overall bone tissue formation by mesenchymal stems cells cultured in biomaterial scaffolds for tissue engineering applications. In silico techniques can be used to predict the mechanical environment within biomaterial scaffolds, and also the relationship between bone tissue regeneration and mechanical stimulation, and thereby inform conditions for bone tissue engineering experiments. In this study, we investigated bone tissue regeneration in an idealised hydrogel scaffold using a mechano-regulation model capable of predicting tissue differentiation, and specifically compared five loading cases, based on known experimental bioreactor regimes. These models predicted that low levels of mechanical loading, i.e. compression (0.5% strain), pore pressure of 10 kPa and a combination of compression (0.5%) and pore pressure (10 kPa), could induce more osteogenic differentiation and lead to the formation of a higher bone tissue fraction. In contrast greater volumes of cartilage and fibrous tissue fractions were predicted under higher levels of mechanical loading (i.e. compression strain of 5.0% and pore pressure of 100 kPa). The findings in this study may provide important information regarding the appropriate mechanical stimulation for in vitro bone tissue engineering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albertsm B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Fibroblasts and their transformations: the connective-tissue cell family, 4th edn. Garland Science, New York

    Google Scholar 

  • Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029

    Article  Google Scholar 

  • Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Granja PL (2010) Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 11:1956–1964. doi:10.1021/bm100264a

    Article  Google Scholar 

  • Bland YS, Critchlow MA, Ashhurst DE (1999) The expression of the fibrillar collagen genes during fracture healing: heterogeneity of the matrices and differentiation of the osteoprogenitor cells. Histochem J 31:797–809

    Article  Google Scholar 

  • Burke DP, Kelly DJ (2012) Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS ONE 7:e40737. doi:10.1371/journal.pone.0040737

    Article  Google Scholar 

  • Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554. doi:10.1016/j.biomaterials.2007.09.003

    Article  Google Scholar 

  • Carter DR, Blenman PR, Beaupre GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6:736–748. doi:10.1002/jor.1100060517

    Article  Google Scholar 

  • Chapman LA, Shipley RJ, Whiteley JP, Ellis MJ, Byrne HM, Waters SL (2014) Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling. PLoS ONE 9:e105813. doi:10.1371/journal.pone.0105813

    Article  Google Scholar 

  • Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43:961–968

    Article  Google Scholar 

  • Chen PY, Yang KC, Wu CC, Yu JH, Lin FH, Sun JS (2014) Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase. Acta Biomater 10:912–920. doi:10.1016/j.actbio.2013.11.009

    Article  Google Scholar 

  • Chippada U, Langrana N, Yurke B (2009) Complete mechanical characterization of soft media using nonspherical rods. J Appl Phys. doi:10.1063/1.3211313

    Google Scholar 

  • Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  Google Scholar 

  • Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180

    Google Scholar 

  • Ford JL, Robinson DE, Scammell BE (2003) The fate of soft callus chondrocytes during long bone fracture repair. J Orthop Res 21:54–61. doi:10.1016/S0736-0266(02)00087-6

    Article  Google Scholar 

  • Guyot Y, Papantoniou I, Chai YC, Van Bael S, Schrooten J, Geris L (2014) A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech Model Mechanobiol 13:1361–1371. doi:10.1007/s10237-014-0577-5

    Article  Google Scholar 

  • Guyot Y, Luyten FP, Schrooten J, Papantoniou I, Geris L (2015) A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnol Bioeng 112:2591–2600. doi:10.1002/bit.25672

    Article  Google Scholar 

  • Hodgskinson R, Currey JD (1992) Young’s modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 3:377–381

    Article  Google Scholar 

  • Huiskes R, Van Driel WD, Prendergast PJ, Soballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788

    Article  Google Scholar 

  • Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, Khademhosseini A (2010) Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication. doi:10.1088/1758-5082/2/3/035003

    Google Scholar 

  • Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252:230–246. doi:10.1016/j.jtbi.2008.01.030

    Article  MathSciNet  Google Scholar 

  • Jagodzinski M et al (2008) Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech 41:1885–1891. doi:10.1016/j.jbiomech.2008.04.001

    Article  Google Scholar 

  • Jukes JM, Both SK, Leusink A, Sterk LM, van Blitterswijk CA, de Boer J (2008) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci USA 105:6840–6845. doi:10.1073/pnas.0711662105

    Article  Google Scholar 

  • Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74. doi:10.1016/j.biomaterials.2010.08.074

    Article  Google Scholar 

  • Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21

    Article  Google Scholar 

  • Li DQ, Tang TT, Lu JX, Dai KR (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng A 15:2773–2783. doi:10.1089/ten.tea.2008.0540

    Article  Google Scholar 

  • McCoy RJ, Jungreuthmayer C, O’Brien FJ (2012) Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnol Bioeng 109:1583–1594. doi:10.1002/Bit.24424

    Article  Google Scholar 

  • McDermott AM, Mason DE, Lin AS, Guldberg RE, Boerckel JD (2016) Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration. J Mech Behav Biomed Mater 62:169–181. doi:10.1016/j.jmbbm.2016.05.010

    Article  Google Scholar 

  • Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32:435–446. doi:10.1023/B:Abme.0000017538.72511.48

    Article  Google Scholar 

  • Mizuno S, Glowacki J (1996) Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials 17:1819–1825

    Article  Google Scholar 

  • Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. doi:10.1016/j.biomaterials.2009.09.063

    Article  Google Scholar 

  • Myster DL, Duronio RJ (2000) To differentiate or not to differentiate? Curr Biol CB 10:R302–304

    Article  Google Scholar 

  • Olivares AL, Marsal E, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149. doi:10.1016/j.biomaterials.2009.07.041

    Article  Google Scholar 

  • Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548

    Article  Google Scholar 

  • Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M (2009) Modeling distraction osteogenesis: analysis of the distraction rate. Biomech Model Mechanobiol 8:323–335. doi:10.1007/s10237-008-0138-x

    Article  Google Scholar 

  • Reina-Romo E, Gomez-Benito MJ, Sampietro-Fuentes A, Dominguez J, Garcia-Aznar JM (2011) Three-dimensional simulation of mandibular distraction osteogenesis: mechanobiological analysis. Ann Biomed Eng 39:35–43. doi:10.1007/s10439-010-0166-4

    Article  Google Scholar 

  • Ribeiro FO, Gomez-Benito MJ, Folgado J, Fernandes PR, Garcia-Aznar JM (2015) In silico mechano-chemical model of bone healing for the regeneration of critical defects: the effect of BMP-2. PLoS ONE 10:e0127722. doi:10.1371/journal.pone.0127722

    Article  Google Scholar 

  • Sandino C, Lacroix D (2011) A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech Model Mechanobiol 10:565–576. doi:10.1007/s10237-010-0256-0

    Article  Google Scholar 

  • Sandino C, Checa S, Prendergast PJ, Lacroix D (2010) Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31:2446–2452

    Article  Google Scholar 

  • Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech Model Mechanobiol 7:355–366. doi:10.1007/s10237-007-0089-7

    Article  Google Scholar 

  • Shav D, Einav S (2010) The effect of mechanical loads in the differentiation of precursor cells into mature cells. Ann NY Acad Sci 1188:25–31. doi:10.1111/j.1749-6632.2009.05079.x

    Article  Google Scholar 

  • Stops AJ, Heraty KB, Browne M, O’Brien FJ, McHugh PE (2010) A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 43:618–626. doi:10.1016/j.jbiomech.2009.10.037

    Article  Google Scholar 

  • Yates KE (2004) Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts. Osteoarthr Cartil OARS Osteoarthr Res Soc 12:497–505. doi:10.1016/j.joca.2004.02.009

    Article  Google Scholar 

  • Zhao F, Vaughan TJ, McNamara LM (2015) Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech Model Mechanobiol 14:231–243. doi:10.1007/s10237-014-0599-z

  • Zhao F, Vaughan TJ, McNamara LM (2016) Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomech Model Mechanobiol 15:561–577. doi:10.1007/s10237-015-0710-0

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by European Research Council (ERC) under the project of BONEMECHBIO (Grant No. 258992). Additionally, F. Zhao would like to thank Dr. Maria Jose Gomez-Benito (University of Zaragoza), Prof. Damien Lacroix (University of Sheffield) and Dr. Patrick McGarry (NUI Galway) for the insightful discussion. Also, Irish Centre for High End Computing (ICHEC) and MaTe Computing Cluster in Eindhoven University of Technology (Netherlands) are acknowledged for running the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laoise M. McNamara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests on this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Mc Garrigle, M.J., Vaughan, T.J. et al. In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm. Biomech Model Mechanobiol 17, 5–18 (2018). https://doi.org/10.1007/s10237-017-0941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0941-3

Keywords

Navigation