Skip to main content

Advertisement

Log in

Modeling distraction osteogenesis: analysis of the distraction rate

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Distraction osteogenesis is a useful technique aimed at inducing bone formation in widespread clinical applications. One of the most important factors that conditions the success of bone regeneration is the distraction rate. Since the mechanical environment around the osteotomy site is one of the main factors that affects both quantity and quality of the regenerated bone, we have focused on analyzing how the distraction rate influences on the mechanical conditions and tissue regeneration. Therefore, the aim of the present work is to explore the potential of a mathematical algorithm to simulate clinically observed distraction rate related phenomena that occur during distraction osteogenesis. Improvements have been performed on a previous model (Gómez-Benito et al. in J Theor Biol 235:105–119, 2005) in order to take into account the load history. The results obtained concur with experimental findings: a slow distraction rate results in premature bony union, whereas a fast rate results in a fibrous union. Tension forces in the interfragmentary gap tissue have also been estimated and successfully compared with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • al Ruhaimi KA (2001) Comparison of different distraction rates in the mandible: an experimental investigation. Int J Oral Maxillofac Surg 30: 220–227

    Article  Google Scholar 

  • Ament C, Hofer EP (2000) A fuzzy logic model of fracture healing. J Biomech 33: 961–968

    Article  Google Scholar 

  • Aronson J (1993) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301: 124–131

    Google Scholar 

  • Aronson J, Shen X, Gao G, Miller F, Quattlebaum T, Skinner R, Badger T, Lumpkin CJ (1997) Sustained proliferation accompanies distraction osteogenesis in the rat. J Orthop Res 15: 563–9

    Article  Google Scholar 

  • Asahina I, Sampath T, Nishimura I, Hauschka P (1993) Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol 123: 921–33

    Article  Google Scholar 

  • Bailón-Plaza A, van der Meulen MC (2003) Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36: 1069–1077

    Article  Google Scholar 

  • Boccaccio A, Lamberti L, Pappalettere C, Carano A, Cozzani M (2006) Mechanical behavior of an osteotomized mandible with distraction orthodontic devices. J Biomech 39: 2907–18

    Article  Google Scholar 

  • Bouletreau PJ, Warren SM, Longaker MT (2002) The molecular biology of distraction osteogenesis. J Craniomaxillofac Surg 30: 1–11

    Google Scholar 

  • Brunner UH, Cordey J, Schweiberer L, Perren SM (1994) Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin Orthop Relat Res 301: 147–155

    Google Scholar 

  • Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355: S41–S55

    Article  Google Scholar 

  • Choi IH, Shim JS, Seong SC, Lee MC, Song KY, Park SC, Chung CY, Cho TJ, Lee DY (1997) Effect of the distraction rate on the activity of the osteoblast lineage in distraction osteogenesis of rat’s tibia. Immunostaining study of the proliferating cell nuclear antigen, osteocalcin, and transglutaminase c. Bull Hosp Jt Dis 56: 34–40

    Google Scholar 

  • Choi P, Ogilvie C, Thompson T, Miclau T, Helms JH (2004) Cellular and molecular characterization of a murine non-union model. J Orthop Res 22: 1100–1107

    Article  Google Scholar 

  • Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32: 255–266

    Article  Google Scholar 

  • Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355: S132–S147

    Article  Google Scholar 

  • Cullinane DM, Salisbury KT, Alkhiary Y, Eisenberg S (2003) Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development. J Exp Biol 206: 2459–2471

    Article  Google Scholar 

  • Fang T, Salim A, Xia W, Nacamuli R, Guccione S, Song H, Carano R, Filvaroff E, Bednarski M, Giaccia A, Longaker M (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20: 1114–24

    Article  Google Scholar 

  • Farhadieh RH, Gianoutsos MP, Dickinson R, Walsh WR (2000) Effect of distraction rate on biomechanical, mineralization, and histologic properties of an ovine mandible model. Plast Reconstr Surg 105: 889–895

    Article  Google Scholar 

  • Farquhar T, Dawson P, Torzilli P (1990) A microstructural model for the anisotropic drained stiffness of articular cartilage. J Biomech Eng 112: 414–425

    Article  Google Scholar 

  • Fischgrund J, Paley D, Suter C (1994) Variables affecting time to bone healing during limb lengthening. Clin Orthop Relat Res 301: 31–7

    Google Scholar 

  • García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40: 1467–1476

    Article  Google Scholar 

  • Gardner TN, Mishra S (2003) The biomechanical environment of a bone fracture and its influence upon the morphology of healing. Med Eng Phys 25: 455–464

    Article  Google Scholar 

  • Gerstenfeld LC, Culliname DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal development process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88: 873–884

    Article  Google Scholar 

  • Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235: 105–119

    Article  Google Scholar 

  • Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2006) A 3d computational simulation of fracture callus formation: influence of the stiffness of the external fixator. J Biomech Eng 128: 290–299

    Article  Google Scholar 

  • Griffin L, Gibeling J, Martin R, Gibson V, Stover S (1997) Model of flexural fatigue damage accumulation for cortical bone. J Orthop Res. 15(4): 607–614

    Article  Google Scholar 

  • Hibbit, Karlsson and Sorensen, Inc (2002) Theory manual, v. 6.3, HKS inc., Pawtucket

  • Idelsohn S, Planell JA, Gil FJ, Lacroix D (2006) Development of a dynamic mechano-regulation model based on shear strain and fluid flow to optimize distraction osteogenesis. J Biomech 39: S1–S684

    Article  Google Scholar 

  • Ilizarov G (1988) The principles of the ilizarov method. Bull Hosp Jt Dis Orthop Inst 48: 1

    Google Scholar 

  • Ilizarov G (1989a) The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin Orthop 238: 249–81

    Google Scholar 

  • Ilizarov G (1989b) The tension-stress effect on the genesis and growth of tissues. Part II: the influence of the rate and frequency of distraction. Clin Orthop 239: 263–85

    Google Scholar 

  • Ilizarov G (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 250: 8–26

    Google Scholar 

  • Isaksson H, Comas O, Van Donkelaar CC, Mediavilla J, Wilson W, Huiskes R, Ito K (2007) Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech 40: 2002–11

    Article  Google Scholar 

  • Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39: 1507–16

    Article  Google Scholar 

  • Ishizeki K, Kuroda N, Nawa T (1992) Morphological characteristics of the life cycle of resting cartilage cells in mouse rib investigated in intrasplenic isografts. Anat Embryol (Berl) 185: 421–30

    Google Scholar 

  • Iwaki A, Jingushi S, Oda Y, Izumi T, Shida JI, Tsuneyoshi M, Sugioka Y (1997) Localization and quantification of proliferating cells during rat fracture repair: detection of proliferating cell nuclear antigen by immunochemistry. J Bone Miner Res 12: 96–102

    Article  Google Scholar 

  • Jin M, Levenston M, Frank E, Grodzinsky A (1999) Regulation of cartilage matrix metabolism by dynamic tissue shear strain. Trans Orthop Res Soc 24: 169

    Google Scholar 

  • Kelly DJ, Boccaccio A (2006) Tissue differentiation and bone regeneration in an osteotomized and distracted mandible. J Biomech, p 39S

  • King NS, Liu ZJ, Wang LL, Chiu IY, Whelan MF, Huang GJ (2003) Effect of distraction rate and consolidation period on bone density following mandibular osteodistraction in rats. Arch Oral Biol 48: 299–308

    Article  Google Scholar 

  • Kofod T, Cattaneo PM, Melsen B (2005) Three-dimensional finite element analysis of the mandible and temporomandibular joint on simulated occlusal forces before and after vertical ramus elongation by distraction osteogenesis. J Craniofac Surg 16: 421–9

    Article  Google Scholar 

  • Kojimoto H, Yasui N, Goto T, Matsuda S, Shimomura Y (1988) Bone lengthening in rabbits by callus distraction. J Bone Joint Surg Br 70-B: 543–9

    Google Scholar 

  • Lacroix D (2000) Simulation of tissue differentiation during fracture healing. PhD Thesis, University of Dublin

  • Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35: 1163–1171

    Article  Google Scholar 

  • Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G (1998) Distraction bone healing versus osteotomy healing: a comparative biochemical analysis. J Bone Miner Res 13: 279–86

    Article  Google Scholar 

  • Li G, Bronk JT, An KN, Kelly PJ (1987) Permeability of cortical bone of canine tibiae. Microvasc Res 34: 302–310

    Article  Google Scholar 

  • Li G, Simpson HRW, Kenwright J, Triffitt JT (1997) Assessment of cell proliferation in regenerating bone during distraction osteogenesis at different distraction rates. J Orthop Res 15: 765–772

    Article  Google Scholar 

  • Li G, Simpson HRW, Kenwright J, Triffitt JT (2000) Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mrnas and the distribution of types I and II collagens. Cell Biol Int 24: 25–33

    Article  Google Scholar 

  • Loboa EG, Fang TD, Parker DW, Warren SM, Fong KD, Longaker MT, Carter DR (2005) Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J Orthop Res 23: 663–70

    Article  Google Scholar 

  • Martin R, Burr D, Sharkey N (1998) Skeletal tissue mechanics. Springer, New York

    Google Scholar 

  • Miner M (1945) Cumulative fatigue damage. Trans Am Soc Mech Eng 67: A159–A164

    Google Scholar 

  • Morgan EF, Longaker MT, Carter DR (2006) Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol 25: 94–103

    Article  Google Scholar 

  • Nakase T, Takaoka K, Hirakawa K, Hirota S, Takemura T, Onoue H, Takebayashi K, Kitamura Y, Nomura S (1994) Alterations in the expression of osteonectin, osteopontin and osteocalcin mrnas during the development of skeletal tissues in vivo. Bone Miner 26: 109–22

    Article  Google Scholar 

  • Ohyama M, Miyasaka Y, Sakurai M, Yokobori AJ, Sasaki S (1994) The mechanical behavior and morphological structure of callus in experimental callotasis. Biomed Mater Eng 4: 273–81

    Google Scholar 

  • Pacifici M, Golden E, Oshima O, Shapiro I, Leboy P, Adams S (1990) Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? Ann N Y Acad Sci 599: 45–57

    Article  Google Scholar 

  • Pauwels F (1960) Eine neue theorie über den einflub mechanischer reize auf die differenzierung der stützgewebe. Z Anat Entwicklungsgeschichte 121: 478–515

    Article  Google Scholar 

  • Perren SM, Cordey J (1980) The concept of interfragmentary strain. Currect concepts of internal fixation of fractures. Springer, Berlin, pp 63–77

    Google Scholar 

  • Prendergast P, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. esb research award 1996. J Biomech 30: 539–48

    Article  Google Scholar 

  • Provenzano P, Heisey D, Hayashi K, Lakes R, Vanderby RJ (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92: 362–71

    Google Scholar 

  • Richards M, Goulet JA, Weiss JA, Waanders NA, Schaffler MB, Goldstein SA (1998) Bone regeneration and fracture healing: experience with distraction osteogenesis model. Clin Orthop Relat Res 355: S191–S204

    Article  Google Scholar 

  • Roberts W, Mozsary P, Klingler E (1982) Nuclear size as a cell-kinetic marker for osteoblast differentiation. Am J Anat 165: 373–84

    Article  Google Scholar 

  • Roder I (2003) Dynamical modeling of hematopoietic stem cell organization. PhD Thesis, Leipzig

  • Samchukov ML, Cope JB, Cherkashin AM (2001) Craniofacial distraction osteogenesis. Mosby Inc., St. Louis

    Google Scholar 

  • Samchukov ML, Cope JB, Harper RP, Ross JD (1998) Biomechanical considerations of mandibular lengthening and widening by gradual distraction using a computer model. J Oral Maxillofac Surg 56: 51–9

    Article  Google Scholar 

  • Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29: 1131–1136

    Article  Google Scholar 

  • Schriefer J, Warden S, Saxon L, Robling A, Turner C (2005) Cellular accommodation and the response of bone to mechanical loading. J Biomech 38: 1838–1845

    Article  Google Scholar 

  • Schwarz U, Bischofs I (2005) Physical determinants of cell organization in soft media. Med Eng Phys 27: 763–72

    Article  Google Scholar 

  • Simha NK, Fedewa M, Leo PH, Lewis JL, Oegema T (1999) A composites theory predicts the dependence of stiffness of cartilage culture tissues on collagen volume fraction. J Biomech 32: 503–509

    Article  Google Scholar 

  • Smith R, Roberts W (1980) Cell kinetics of the initial response to orthodontically induced osteogenesis in rat molar periodontal ligament. Calcif Tissue Int 30: 51–6

    Article  Google Scholar 

  • Song G, Ju Y, Soyama H, Ohashi T, Sato M (2007) Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech 4: 201–10

    Google Scholar 

  • Stokes I, Aronsson D, Dimock A, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24: 1327–1334

    Article  Google Scholar 

  • Tajana GF, Morandi M, Zembo M (1989) The structure and development of osteogenic repair tissue according to ilizarov technique in man. Characterization of extracellular matrix. Orthopedics 12: 515–23

    Google Scholar 

  • Turner CH, Forwood M, Rho JY, Yoshikawa T (1994) Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 9: 87–97

    Article  Google Scholar 

  • van der Rijt JA, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6: 697–702

    Article  Google Scholar 

  • White S, Kenwright J (1990) The timing of distraction of an osteotomy. J Bone Joint Surg Br 72: 356–61

    Google Scholar 

  • Wong J, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19: 1908–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Reina-Romo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M. et al. Modeling distraction osteogenesis: analysis of the distraction rate. Biomech Model Mechanobiol 8, 323–335 (2009). https://doi.org/10.1007/s10237-008-0138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-008-0138-x

Keywords

Navigation