Skip to main content

Advertisement

Log in

Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mounting evidence suggests that the pulsatile character of blood pressure and flow within large arteries plays a particularly important role as a mechano-biological stimulus for wall growth and remodeling. Nevertheless, understanding better the highly coupled interactions between evolving wall geometry, structure, and properties and the hemodynamics will require significantly more experimental data. Computational fluid–solid-growth models promise to aid in the design and interpretation of such experiments and to identify candidate mechanobiological mechanisms for the observed arterial adaptations. Motivated by recent aortic coarctation models in animals, we used a computational fluid–solid interaction model to study possible local and systemic effects on the hemodynamics within the thoracic aorta and coronary, carotid, and cerebral arteries due to a distal aortic coarctation and subsequent spatial variations in wall adaptation. In particular, we studied an initial stage of acute cardiac compensation (i.e., maintenance of cardiac output) followed by early arterial wall remodeling (i.e., spatially varying wall thickening and stiffening). Results suggested, for example, that while coarctation increased both the mean and pulse pressure in the proximal vessels, the locations nearest to the coarctation experienced the greatest changes in pulse pressure. In addition, after introducing a spatially varying wall adaptation, pressure, left ventricular work, and wave speed all increased. Finally, vessel wall strain similarly experienced spatial variations consistent with the degree of vascular wall adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre-Sanceledonio M, Fossum TW, Miller MW, Humphrey JD, Berridge BR, Herraez P (2003) Collateral circulation in experimental coarctation of the aorta in minipigs: a possible association with hypertrophied vasa vasorum. J Comp Pathol 128: 165–171

    Article  Google Scholar 

  • Arribas SM, Hinek A, González MC (2006) Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111(3): 771–791

    Article  Google Scholar 

  • Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G (2009) Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions?. Comput Methods Biomech Biomed Eng 12(1): 113–123

    Article  Google Scholar 

  • Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G (2011) Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos Trans R Soc A 369: 4316–4330

    Article  Google Scholar 

  • Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46): 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  • Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31(1 Pt 2): 162–169

    Article  Google Scholar 

  • Choi G, Cheng CP, Wilson NM, Taylor CA (2008) Methods for quantifying three-dimensional deformation of arteries due to pulsatile and non-pulsatile forces: implications for the design of stents and stent grafts. Ann Biomed Eng 37(1): 14–33

    Article  Google Scholar 

  • Coogan JS, Chan FP, Taylor CA, Feinstein JA (2011) Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheter Cardiovasc Interv 77(5): 680–691

    Article  Google Scholar 

  • Dajnowiec D, Langille BL (2007) Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin Sci (Lond) 113(1): 15–23

    Article  Google Scholar 

  • Dart AM, Kingwell BA (2001) Pulse pressure—a review of mechanisms and clinical relevance. J Am Coll Cardiol 37(4): 975–984

    Article  Google Scholar 

  • de Korte CL, Carlier SG, Mastik F, Doyley MM, van der Steen AFW, Serruys PW, Bom N (2002) Morphological and mechanical information of coronary arteries obtained with intravascular elastography. Eur Heart J 23: 405–413

    Article  Google Scholar 

  • Eberth JF, Gresham VC, Reddy AK, Popovic N, Wilson E, Humphrey JD (2009) Importance of pulsatility in hypertensive carotid artery growth and remodeling. J Hypertens 27(10): 2010–2021

    Article  Google Scholar 

  • Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery growth and remodeling in response to altered pulsatility. Am J Physiol Heart Circ Physiol 299(6): H1875–H1883

    Article  Google Scholar 

  • Figueroa C, Baek S, Taylor C, Humphrey J (2009) A computational framework for coupled solid-fluid-growth mechanics in cardiovascular simulations. Comput Methods Appl Mech Eng 198: 3583–3602

    Article  MathSciNet  MATH  Google Scholar 

  • Figueroa CA, Vignon-Clementel IE, Jansen KC, Hughes TJ, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195: 5685–5706

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20): 1431–1438

    Article  Google Scholar 

  • Giddens DP, Mabon RF, Cassanova RA (1976) Measurements of disordered flows distal to subtotal vascular stenosis in the thoracic aortas of dogs. Circ Res 39: 112–119

    Article  Google Scholar 

  • Gow BS, Hadfield CD (1979) The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ Res 45(5): 588–594

    Article  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  • Haskett D, Johnson G, Zhou A, Utzinger U, Geest JV (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9: 725–736

    Article  Google Scholar 

  • Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13(2): 175–184

    Article  Google Scholar 

  • Hayenga HN (2010) Mechanics of atherosclerosis, hypertension-induced growth, and arterial remodeling. Ph.D. dissertation, Texas A&M University, TX, USA

  • Himwich WA, Spurgeon HA (1968) Pulse pressure contours in cerebral arteries. Acta Neurol Scand 44(1): 43–56

    Article  Google Scholar 

  • Hozumi T, Yoshida K, Akasaka T, Asami Y, Ogata Y, Takagi T, Kaji S, Kawamoto T, Ueda Y, Morioka S (1998) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 32(5): 1251–1259

    Article  Google Scholar 

  • Hoffman MBM, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. JMRI 8(3): 568–576

    Article  Google Scholar 

  • Hu J-J, Ambrus A, Fossum TW, Miller MW, Humphrey JD, Wilson E (2008) Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J Histochem Cytochem 56(4): 359–370

    Article  Google Scholar 

  • Hughes TJR (2000) The finite element method. Linear static and dynamic finite element analysis. Dover, New York

    MATH  Google Scholar 

  • Huis GAV, Sipkema P, Westerhof N (1987) Coronary input impedance during cardiac cycle as determined by impulse response method. Am J Physiol 253(2 Pt 2): H317–H324

    Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, New York

    Google Scholar 

  • Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52(2): 195–200

    Article  Google Scholar 

  • Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10: 221–246

    Article  Google Scholar 

  • Kim HJ, Figueroa CA, Hughes TJ, Jansen KE, Taylor CA (2009) Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng 198: 3551–3566

    Article  MathSciNet  MATH  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10): 3195–3209

    Article  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11): 2153–2169

    Article  Google Scholar 

  • LaDisa JF, Taylor CA, Feinstein JA (2010) Aortic coarctation: recent developments in experiemental and computational methods to assess treatments for this simple condition. Prog Pediatr Cardiol 30(1): 45–49

    Article  Google Scholar 

  • LaDisa JF, Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9): 0910091

    Article  Google Scholar 

  • LaDisa JF, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients previously treated by resection with end- to-end anastomosis. Congenit Heart Dis 6: 432–443

    Article  Google Scholar 

  • Lakatta EG, Wang M, Najjar SS (2009) Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin N Am 93(3): 583–604 (Table of Contents)

    Article  Google Scholar 

  • Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74(7): 834–841

    Article  Google Scholar 

  • Lantz BM, Foerster JM, Link DP, Holcroft JW (1981) Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am J Roentgenol 137(5): 903–907

    Google Scholar 

  • Laurent S, Boutouyrie P, Lacolley P (2005) Structural and genetic bases of arterial stiffness. Hypertension 45(6): 1050–1055

    Article  Google Scholar 

  • Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38(4): 1288–1313

    Article  Google Scholar 

  • Matsumoto T, Hayashi K (1994) Mechanical and dimensional adaptation of rat aorta to hypertension. J Biomech Eng 116(3): 278–283

    Article  Google Scholar 

  • Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48(3): 277–291

    Article  MathSciNet  MATH  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1): 1–18

    Article  Google Scholar 

  • Nagai Y, Fleg JL, Kemper MK, Rywik TM, Earley CJ, Metter EJ (1999) Carotid arterial stiffness as a surrogate for aortic stiffness: relationship between carotid artery pressure-strain elastic modulus and aortic pulse wave velocity. Ultrasound Med Biol 25(2): 181–188

    Article  Google Scholar 

  • Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries: theoretical, experimental, and clinical principles. Hodder Arnold, London

    Google Scholar 

  • O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50(1): 1–13

    Article  Google Scholar 

  • Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imag 19(3): 186–202

    Article  Google Scholar 

  • Ottesen J, Olufsen M, Larsen J (2004) Applied mathematical models in human physiology. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Pearson GD, Devereux R, Loeys B, Maslen C, Milewicz D, Pyeritz R, Ramirez F, Rifkin D, Sakai L, Svensson L, Wessels A, Eyk JV, Dietz HC, National Heart L, Institute B, Group NMFW (2008) Report of the national heart, lung, and blood institute and national marfan foundation working group on research in marfan syndrome and related disorders. Circulation 118(7): 785–791

    Article  Google Scholar 

  • Prummer M, Fahrig R, Wigstrom L, Boese J, Lauritsch G, Strobel N, Hornegger J (2007) Cardiac C-arm CT: 4D non-model based heart motion estimation and its application. Proc SPIE 6510: 651015- 1-12

    Google Scholar 

  • Redheuil A, Yu W-C, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D, Lima JAC (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55(2): 319–326

    Article  Google Scholar 

  • Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1): H208–H222

    Article  Google Scholar 

  • Safar ME (2000) Pulse pressure, arterial stiffness, and cardiovascular risk. Curr Opin Cardiol 15(4): 258–263

    Article  Google Scholar 

  • Safar ME (2010) Arterial aging–hemodynamic changes and therapeutic options. Nat Rev Cardiol 7(8): 442–449

    Article  Google Scholar 

  • Safar ME, Boudier HS (2005) Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension 46(1): 205–209

    Article  Google Scholar 

  • Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195: 5634–5655

    Article  MathSciNet  MATH  Google Scholar 

  • Scheel P, Ruge C, Petruch UR, Schöning M (2000) Color duplex measurement of cerebral blood flow volume in healthy adults. Stroke 31(1): 147–150

    Article  Google Scholar 

  • Schlosser T, Pagonidis K, Herborn CU, Hunold P, Waltering K-U, Lauenstein TC, Barkhausen J (2005) Assessment of left ventricular parameters using 16-mdct and new software for endocardial and epicardial border delineation. Am J Roentgenol 184(3): 765–773

    Google Scholar 

  • Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans. a new method with the potential for noninvasive application. Circulation 94(10): 2497–2506

    Article  Google Scholar 

  • Simvascular: Cardiovascular Modeling and Simulation Application (2007) https://simtk.org/home/simvascular

  • Suga H, Sagawa K (1974) Instantaneous pressure–volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35(1): 117–126

    Article  Google Scholar 

  • Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32(3): 314–322

    Article  Google Scholar 

  • Taylor CA, Figueroa CA (2009) Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11: 109–134

    Article  Google Scholar 

  • Taylor SH, Donald KW (1960) Circulatory studies at rest and during exercise in coarctation of the aorta before and after operation. Br Heart J 22: 117–139

    Article  Google Scholar 

  • Toprea BI, Schwarzacher SP, Chang A, Asvar C, Huie P, Sibley RK, Zarins CK (2000) Reduction of aortic wall motion inhibits hypertension-mediated experimental atherosclerosis. Arterioscler Thromb Vasc Biol 20: 2127–2133

    Article  Google Scholar 

  • Valentín A, Baek S, Humphrey J (2009) Complementary roles of vasoactivity and matrix turnover in arterial adaptations to altered flow, pressure, and axial stretch. J R Soc Interface 6: 293–306

    Article  Google Scholar 

  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195: 3776–3796

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner HP, Humphrey JD (2011) Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid. J Biomech Eng 133(5): 051009

    Article  Google Scholar 

  • Weissler AM, Harris LC, White GD (1963) Left ventricular ejection time index in man. J Appl Physiol 18: 919–923

    Google Scholar 

  • Whiting C, Jansen K (2001) A stabilized finite element method for the incompressible navier-stokes equations using a hierarchical basis. Int J Numer Methods Flds 35: 93–116

    Article  MATH  Google Scholar 

  • Williams LR, Leggett RW (1989) Referece values for resting blood flow to organs of man. Clin Phys Physiol Meas 10(3): 187–217

    Article  Google Scholar 

  • Wilson N, Wang K, Dutton RW, Taylor CA (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect Notes Comput Sci 2208: 449–456

    Article  Google Scholar 

  • Wolinsky H (1970) Response of the rat aortic media to hypertension. morphological and chemical studies. Circ Res 26(4): 507–522

    Article  Google Scholar 

  • Wolinsky H (1972) Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Morphological and chemical studies. Circ Res 30(3): 301–309

    Article  Google Scholar 

  • Xiong G, Figueroa CA, Xiao N, Taylor CA (2011) Simulation of blood flow in deformable vessels using subject-specific geometry and assigned variable mechanical wall properties. Int J Numer Methods Biomed Eng 27: 1000–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Xu C, Zarins CK, Bassiouny HS, Briggs WH, Reardon C, Glagov S (2000) Differential transmural distribution of gene expression for collagen types i and iii proximal to aortic coarctation in the rabbit. J Vasc Res 37(3): 170–182

    Article  Google Scholar 

  • Zamir M, Sinclair P, Wonnacott TH (1992) Relation between diameter and flow in major branches of the arch of the aorta. J Biomech 25(11): 1303–1310

    Article  Google Scholar 

  • Zhang DP, Edwards E, Mei L, Rueckert D (2009) 4D Motion modeling of the coronary arteries from CT images for robotic assited minimally invasive surgery. Proc SPIE 7259: 72590X-1-8

    Google Scholar 

  • Zhou Y, Kassab GS, Molloi S (1999) On the design of the coronary arterial tree: a generalization of Murray’s law. Phys Med Biol 44(12): 2929–2945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Alberto Figueroa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coogan, J.S., Humphrey, J.D. & Figueroa, C.A. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomech Model Mechanobiol 12, 79–93 (2013). https://doi.org/10.1007/s10237-012-0383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0383-x

Keywords

Navigation