Skip to main content
Log in

Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The goal of this study was to model the in vivo non-linear mechanical behavior of human common carotid arteries (CCAs) and then to compare wall stresses and associated contributions of micro-constituents in normotensive (NT) and treated hypertensive (HT) subjects. We used an established theoretical model of 3D arterial mechanics that assumes a hyperelastic, anisotropic, active–passive, and residually stressed wall. In vivo data were obtained non-invasively from CCAs in 16 NT (21–64 years old) and 25 treated HT (44–69 years old) subjects. The associated quasi-static boundary value problem was solved semi-analytically over a cardiac cycle while accounting for surrounding perivascular tissue. Best-fit values of model parameters, including those describing contributions by intramural elastin, fibrillar collagen, and vascular smooth muscle, were estimated by a non-linear least-squares method. The model (1) captured temporal changes in intraluminal pressure, (2) estimated wall stress fields that appeared to reflect the presence or absence of age and disease, and (3) suggested changes in mechanical characteristics of wall micro-constituents despite medical treatment of hypertension. For example, age was positively correlated with residual stresses and altered fibrillar collagen in NT subjects, which indirectly validated the modeling, and HT subjects had higher levels of stresses, increased smooth muscle tone, and a stiffer elastin-dominated matrix despite treatment. These results are consistent with prior reports on effects of age and hypertension, but provide increased insight into evolving contributions of cell and matrix mechanics to arterial behavior in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alastrué V, Pena E, Martinez MA, Doblaré M (2007) Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann Biomed Eng 35(10): 1821–1837

    Article  Google Scholar 

  • Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comp Methods Appl Mech Eng 196(31–32): 3070–3078

    Article  MathSciNet  MATH  Google Scholar 

  • Beaussier H, Masson I, Collin C, Bozec E, Laloux B, Calvet D, Zidi M, Boutouyrie P, Laurent S (2008) Carotid plaque, arterial stiffness gradient, and remodeling in hypertension. Hypertension 52(4): 729–736

    Article  Google Scholar 

  • Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S (1999) Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100(13): 1387–1393

    Google Scholar 

  • Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S (2000) Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35(5): 1049–1054

    Google Scholar 

  • Cardamone L, Valentin A, Eberth JF, Humphrey JD (2009) Origin of axial prestretch and residual stress in arteries. Biomech Model Mechanobiol 8(6): 431–446

    Article  Google Scholar 

  • Cheng K-S, Baker CR, Hamilton G, Hoeks APG, Seifalian AM (2002) Arterial elastic properties and cardiovascular risk/event. Eur J Vasc Endovasc Surg 24(5): 383–397

    Article  Google Scholar 

  • Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3): 268–274

    Article  Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108(2): 189–192

    Article  Google Scholar 

  • Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8): 777–786

    Article  Google Scholar 

  • Eddhahak-Ouni A, Masson I, Allaire E, Zidi M (2009) Stochastic approach to estimate the arterial pressure. Eur J Mech A/Solid 28(4): 712–719

    Article  MATH  Google Scholar 

  • Ferruzzi J, Vorp DA, Humphrey JD (2010) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface (in press). doi:10.1098/rsif.2010.0299

  • Fridez P, Rachev A, Meister JJ, Hayashi K, Stergiopulos N (2001) Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280(6): H2752–H2760

    Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gasser TC, Holzapfel GA (2002) A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Comput Mech 29(4–5): 340–360

    Article  MATH  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15–35

    Article  Google Scholar 

  • Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211(2): 157–172

    Article  Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3): 460–470

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3): 1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3d residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35(4): 530–545

    Article  Google Scholar 

  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5): H2048–H2058

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  • Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42(1): 1–8

    Article  Google Scholar 

  • Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30(4): 509–523

    Article  Google Scholar 

  • Kelly R, Hayward C, Avolio A, O’Rourke M (1989) Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80(6): 1652–1659

    Article  Google Scholar 

  • Laurent S, Caviezel B, Beck L, Girerd X, Billaud E, Boutouyrie P, Hoeks A, Safar M (1994a) Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23(6): 878–883

    Google Scholar 

  • Laurent S, Girerd X, Mourad JJ, Lacolley P, Beck L, Boutouyrie P, Mignot JP, Safar M (1994b) Elastic-modulus of the radial artery wall material is not increased in patients with essential-hypertension. Arterioscler Thromb Vasc Biol 14(7): 1223–1231

    Article  Google Scholar 

  • Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18(3): 278–292

    Google Scholar 

  • Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier H, Zanchetti A (2007) 2007 guidelines for the management of arterial hypertension. J Hypertens 25(6): 1105–1187

    Article  Google Scholar 

  • Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical data. J Biomech 41(12): 2618–2627

    Article  Google Scholar 

  • Meinders JM, Brands PJ, Willigers JM, Kornet L, Hoeks AP (2001) Assessment of the spatial homogeneity of artery dimension parameters with high frame rate 2-d b-mode. Ultrasound Med Biol 27(6): 785–794

    Article  Google Scholar 

  • Paini A, Boutouyrie P, Calvet D, Zidi M, Agabiti-Rosei E, Laurent S (2007) Multiaxial mechanical characteristics of carotid plaque: analysis by multiarray echotracking system. Stroke 38(1): 117–123

    Article  Google Scholar 

  • Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4): 459–468

    Article  Google Scholar 

  • Saini A, Berry C, Greenwald S (1995) Effect of age and sex on residual stress in the aorta. J Vasc Res 32(6): 398–405

    Google Scholar 

  • Schulze-Bauer CA, Holzapfel GA (2003) Determination of constitutive equations for human arteries from clinical data. J Biomech 36(2): 165–169

    Article  Google Scholar 

  • Sommer G, Regitnig P, Koltringer L, Holzapfel GA (2010) Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am J Physiol Heart Circ Physiol 298(3): H898–H912. doi:10.1152/ajpheart.00378.2009

    Article  Google Scholar 

  • Stalhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8(2): 141–148

    Article  Google Scholar 

  • Stalhand J, Klarbring A, Holzapfel GA (2008) Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol 96(1–3): 465–481

    Article  Google Scholar 

  • Stalhand J, Klarbring A, Karlsson M (2004) Towards in vivo aorta material identification and stress estimation. Biomech Model Mechanobiol 2(3): 169–186

    Article  Google Scholar 

  • van Loon P (1977) Length-force and volume-pressure relationships in arteries. Biorheology 14(4): 181–201

    Google Scholar 

  • Walmsley J, Campling M, Chertkow H (1983) Interrelationships among wall structure, smooth muscle orientation, and contraction in human major cerebral arteries. Stroke 14(5): 781–790

    Article  Google Scholar 

  • Wuyts FL, Vanhuyse VJ, Langewouters GJ, Decraemer WF, Raman ER, Buyle S (1995) Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys Med Biol 40(10): 1577–1597

    Article  Google Scholar 

  • Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7): 989–1000

    Article  Google Scholar 

  • Zulliger MA, Stergiopulos N (2007) Structural strain energy function applied to the ageing of the human aorta. J Biomech 40(14): 3061–3069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Zidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, I., Beaussier, H., Boutouyrie, P. et al. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech Model Mechanobiol 10, 867–882 (2011). https://doi.org/10.1007/s10237-010-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0279-6

Keywords

Navigation