Skip to main content
Log in

Assessing the Use of the “Opening Angle Method” to Enforce Residual Stresses in Patient-Specific Arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerical and analytical studies on cylindrical geometries have shown the relevance of accounting for residual stresses in arterial modeling. However, multiple difficulties, both geometrical and numerical, arise when enforcing residual stresses in patient-specific arteries. This is the reason of the few simulations that have been developed on this kind of geometries. In this paper we present a methodology that allows to include residual stresses in arbitrary geometries. Since it is not necessary to know the opened configuration of the artery, it makes it possible to take advantage of non-invasive image acquisition techniques such as CT or MRI to create customized arterial models. A simplified initial strain field showing its accuracy when applied to actual in vivo closed geometries is hypothesized from an opening angle experiment. In addition to residual stresses, the anisotropic hyperelastic and multilayered nature of the arterial tissue was accounted for the simulations of the behavior of a human coronary and iliac arteries. Results show the relevance of considering all these features for getting realistic results and the relative accuracy of using approximate solutions of residual stresses in patient-specific arterial simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Chaudhry H., Bukiet B., Davis A., Ritter A., Findley T. (1997). Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J. Biomech. 30:57–62

    Article  PubMed  CAS  Google Scholar 

  2. Chuong C. J., Fung Y. C. (1983). Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105:268–274

    CAS  Google Scholar 

  3. Chuong C. J., Fung Y. C. (1986). On residual stress in arteries. ASME J. Biomech. Eng. 108:186–192

    Google Scholar 

  4. Delfino A., Stergiopoulos N., Moore Jr. J. E., Meister J. J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786

    Article  PubMed  CAS  Google Scholar 

  5. Dyke T. J. V., Hoger A. (2002). A new method for predicting the opening angle for soft tissues. ASME J. Biomech. Eng. 124:347–354

    Article  Google Scholar 

  6. Fung, Y. C. Biomechanics. Mechanical Properties of Living Tissues. Springer-Verlag, 1993

  7. Fung Y. C., Liu S. Q. (1989). Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349

    PubMed  CAS  Google Scholar 

  8. Fung Y., Liu S. (1991). Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70:2455–2470

    Article  PubMed  CAS  Google Scholar 

  9. Gardiner J. C., Weiss J. A. (2003). Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21:1098–1106

    Article  PubMed  Google Scholar 

  10. Gasser T. C., Schulze-Bauer C. A. J., Holzapfel G. A. (2002). A three-dimensional finite element model for arterial clamping. ASME J. Biomech. Eng. 124:355–363

    Article  Google Scholar 

  11. Han H. C., Fung Y. C. (1991). Species dependence of the zero-stress state of aorta: pig versus rat. ASME J. Biomech. Eng. 113:446–451

    CAS  Google Scholar 

  12. Himpel G., Khul E., Menzel A., Steinmann P. (2005). Computational modelling of isotropic multiplicative growth. CMES 8:119–134

    Google Scholar 

  13. Holzapfel G. A. (2000). Nonlinear Solid Mechanics. Wiley, New York

    Google Scholar 

  14. Holzapfel G. A., Gasser T. C., Ogden R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48

    Article  Google Scholar 

  15. Holzapfel G. A., Sommer G., Gasser C. T., Regitnig P. (2005). Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol. – Heart Circ. Physiol. 289:H2048–H2058

    Article  PubMed  CAS  Google Scholar 

  16. Holzapfel G. A., Sommer G., Regitnig P. (2004). Anisotropic mechanical properties of tissue components in human aterosclerotic plaques. J. Biomech. Eng. 126:657–665

    Article  PubMed  Google Scholar 

  17. Imatani S., Maugin G. A. (2002). A constitutive model for material growth and its applications to three-dimensional finite element analysis. Mech. Res. Commun. 29:477–483

    Article  Google Scholar 

  18. Liu S., Fung Y. (1989). Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. ASME J. Biomech. Eng. 111:325–335

    CAS  Google Scholar 

  19. Lubarda V. A., Hoger A. (2002). On the mechanics of solids with growing mass. Int. J. Solids Struc. 39:4627–4664

    Article  Google Scholar 

  20. Marsden, J. E., and T. J. R. Hughes. Mathematical Foundations of Elasticity. Dover, 1994

  21. Menzel A. (2005). Modelling of anisotropic growth in biological tissues. A new approach and computational aspects. Biomech. Model Mechanobiol. 3:147–171

    Article  PubMed  CAS  Google Scholar 

  22. Peña E., Calvo B., Martinez M., Doblaré M. (2006). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39:1686–1701

    Article  PubMed  Google Scholar 

  23. Peña E., Martínez M. A., Calvo B., Doblaré M. (2006). On the numerical treatment of initial strains in soft biological tissues. Int. J. Numer. Meth. Eng. 68:836–860

    Article  Google Scholar 

  24. Peterson S. J., Okamoto R. J. (2000). Effect of residual stress and heterogeneity on circumferential stress in the arterial walls. ASME J. Biomech. Eng. 122:454–456

    Article  CAS  Google Scholar 

  25. Rachev A. (1997). Theoretical study of the effect of the stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30:819–827

    Article  PubMed  CAS  Google Scholar 

  26. Rachev A., Greenwald S. E. (2003). Residual strains in conduit arteries. J. Biomech. 36:661–670

    Article  PubMed  CAS  Google Scholar 

  27. Raghavan M., Trivedi S., Nagaraj A., MacPherson D. D., Chandran K. B. (2004). Three-dimensional finite element analysis of residual stress in arteries. Ann. Biomed. Eng. 32:257–263

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez E., Hoger A., McCulloch A. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467

    Article  PubMed  CAS  Google Scholar 

  29. Schulze-Bauer C. A. J., Morth C., Holzapfel G. A. (2003). Passive biaxial mechanical response of agel human iliac arteries. ASME J. Biomech. Eng. 125:395–406

    Article  Google Scholar 

  30. Simo J. C., Taylor R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48:101–118

    Google Scholar 

  31. Taber L. (1995). Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:487–545

    Article  Google Scholar 

  32. Taber L. A. (1998). A model for aortic growth based on fluid shear and fiber stress. ASME J. Biomech. Eng. 120:348–354

    CAS  Google Scholar 

  33. Taber L., Eggers D. (1996). Theorical study of stress-modulated growth in the aorta. J. Theor. Biol. 180:343

    Article  PubMed  CAS  Google Scholar 

  34. Taber L. A., Humphrey J. D. (2001). Stress-modulated growth, residual stress, and vascular heterogeneity. ASME J. Biomech. Eng. 123:528–535

    Article  CAS  Google Scholar 

  35. Vossoughi, J., Z. Hedzaji, and F. S. Borris. Intimal residual stress and strain in large arteries. In: Bioengineering Conference ASME, Bed-Vol. 24, 1993, pp. 434–437

  36. Williamson S. D., Lam Y., Younis H. F., Huang H., Patel S., Kaazempur-Mofrad M. R., Kamm R. D. (2003). On the sensitivity of wall stresses in diseased arteries to variable material properties. ASME J. Biomech. Eng. 125:147–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided the Spanish Ministry of Science and Technology through the research project DPI 2004-07410-C03-01, the Aragón Government through the research project DGA PM009/2006 and the Spanish Ministry of Health through the research project FIS-PI06-0446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefanía Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alastrué, V., Peña, E., Martínez, M. et al. Assessing the Use of the “Opening Angle Method” to Enforce Residual Stresses in Patient-Specific Arteries. Ann Biomed Eng 35, 1821–1837 (2007). https://doi.org/10.1007/s10439-007-9352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9352-4

Keywords

Navigation