Skip to main content

Advertisement

Log in

Determination of human arterial wall parameters from clinical data

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This study suggests a method to compute the material parameters for arteries in vivo from clinically registered pressure-radius signals. The artery is modelled as a hyperelastic, incompressible, thin-walled cylinder and the membrane stresses are computed using a strain energy. The material parameters are determined in a minimisation process by tuning the membrane stress to the stress obtained by enforcing global equilibrium. In addition to the mechanical model, the study also suggests a preconditioning of the pressure-radius signal. The preconditioning computes an average pressure-radius cycle from all consecutive cycles in the registration and removes, or reduces, undesirable disturbances. The effect is a robust parameter identification that gives a unique solution. The proposed method is tested on clinical data from three human abdominal aortas and the results show that the material parameters from the proposed method do not differ significantly (p < 0.01) from the corresponding parameters obtained by averaging the result from consecutive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åstrand H, Ryden-Ahlgren Å, Sandgren T and Länne T (2005). Age-related increase in wall stress of the human abdominal aorta: an in vivo study. J Vasc Surg 42: 926–931

    Article  Google Scholar 

  • Bailey AJ, Paul RG and Knott L (1998). Mechanism of maturation and ageing of collagen. Mech Ageing Dev 106: 1–56

    Article  Google Scholar 

  • Boudaoud S, Rix H, Meste O, Heneghan C, O’Brian C (2007) Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram. EURASIP J Adv Signal Process 2007:1–12, doi:10.1155/2007/32570

    Article  Google Scholar 

  • Cattell MA and Anderson JC (1996). Age-related changes in amounts and concentration of collagen and elastin in normotensive human thoracic aorta. Clin Chim Acta 245: 73–84

    Article  Google Scholar 

  • Fectics B, Nevo E, Chen CH and Kass DA (1999). Parametric Model Derivation of Transfer Function for Noninvasive Estimation of Aortic Pressure by Radial Tonometry. IEEE Trans Biomed Engrg 46: 698–706

    Article  Google Scholar 

  • Flügge W (1975). Viscoelasticity. Springer, New York

    MATH  Google Scholar 

  • Hansen F, Mangell P, Sonesson B and Länne T (1995). Diameter and compliance in the human common carotid artery—variation with age and sex. Ultrasound Med Biol 21: 1–9

    Article  Google Scholar 

  • Holzapfel GA (2000). Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC and Ogden RW (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61: 1–48

    Article  MATH  MathSciNet  Google Scholar 

  • Holzapfel GA, Sommer G, Gasser TC and Regitnig P (2005). Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol 289: H2048–H2058

    Google Scholar 

  • Humphrey JD (2002). Cardiovascular solid mechanics. Cells, tissues and organs. Springer, New York

    Google Scholar 

  • Kawasaki T, Sasayama S, Yagi S-I, Asakawa T and Hirai T (1987). Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res 21: 678–687

    Article  Google Scholar 

  • Ljung L (1999). System identification—theory for the user. 2nd. PTR Prentice Hall, Upper Saddle River

    Google Scholar 

  • Länne T, Sonesson B, Bergqvist D, Bengtsson H and Gustafsson D (1992). Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur J Vasc Surg 6: 178–184

    Article  Google Scholar 

  • Nichols WW and O’Rourke MF (2005). McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. Hodder Arnold, London

    Google Scholar 

  • Peterson LH, Jensen RE and Pernell J (1960). Mechanical properties of arteries in vivo. Circ Res 8: 622–633

    Google Scholar 

  • Rhodin JG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AD, Sparks HV (eds) Handbook of physiology, the cardiovascular system, vol. 2, pp 1–31

  • Ryden-Ahlgren Å, Åstrand H, Sandgren T, Vernersson E, Sonesson B and Länne T (2001). Dynamic behaviour of the common femoral artery: age and gender of minor importance. Ultrasound Med Biol 27: 181–188

    Article  Google Scholar 

  • Schulze-Bauer CAJ and Holzapfel GA (2003). Determination of constitutive equations for human arteries from clinical data. J Biomech 36: 165–169

    Article  Google Scholar 

  • Schulze-Bauer CAJ, Regitnig P and Holzapfel GA (2002). Mechanics of the human femoral adventitia including high-pressure response. Am J Physiol 282: H2427–H2440

    Google Scholar 

  • Schulze-Bauer CAJ, Mörth C, Holzapfel GA (2003) Passive Biaxial Mechanical Response of Aged Human Iliac Arteries. J Biomech Engrg 125:395–406. doi:10.1115/1.1574331

    Article  Google Scholar 

  • Singh SI and Devi LS (1990). A study on large radial motion of arteries in vivo. J Biomech 23: 1087–1091

    Article  Google Scholar 

  • Sonesson B, Hansen F, Stale H and Länne T (1993). Compliance and diameter in the human abdominal aorta—the influence of age and sex. Eur J Vasc Surg 7: 609–697

    Article  Google Scholar 

  • Sonesson B, Länne T, Vernersson E and Hansen F (1994). Sex difference in the mechanical properties of the abdominal aorta in human beings. J Vasc Surg 20: 959–969

    Google Scholar 

  • Stålhand J and Klarbring A (2005). Aorta in vivo parameter identification using an axial force constraint. Biomechan Model Mechanobiol 3: 191–199

    Article  Google Scholar 

  • Stålhand J and Klarbring A (2006). Parameter identification in arteries using constraints. In: Holzapfel, GA and Ogden, RW (eds) Mechanics of biological tissues, pp 295–305. Springer, Wien,

    Chapter  Google Scholar 

  • Stålhand J, Klarbring A and Karlsson M (2004). Towards in vivo aorta material identification and stress estimation. Biomechan Model Mechanobiol 2: 169–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Stålhand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stålhand, J. Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8, 141–148 (2009). https://doi.org/10.1007/s10237-008-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-008-0124-3

Keywords

Navigation