Skip to main content
Log in

Integrin-mediated mechanotransduction in IL-1β stimulated chondrocytes

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical loading and interleukin-1β (IL-1β) influence the release of nitric oxide (·NO) and prostaglandin E2 (PGE2) from articular chondrocytes via distinct signalling mechanisms. The exact nature of the interplay between the respective signalling pathways remains unclear. Recent studies have shown that integrins act as mechanoreceptors and may transduce extracellular stimuli into intracellular signals, thereby influencing cellular response. The current study demonstrates that the application of dynamic compression induced an inhibition of ·NO and an upregulation of cell proliferation and proteoglycan synthesis in the presence and absence of IL-1β. PGE2 release was not affected by dynamic compression in the absence of IL-1β but was inhibited in the presence of the cytokine. The integrin binding peptide, GRGDSP, abolished or reversed the compression-induced alterations in all four parameters assessed in the presence and absence of IL-1β. The non-binding control peptide, GRADSP, had no effect. These data clearly demonstrate that the metabolic response of the chondrocytes to dynamic compression in the presence and absence of IL-1β, are integrin mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

IL-1β :

Interleukin-1β

PGE2 :

Prostaglandin E2

References

  • Arner EC, Tortorella MD (1995) Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum 38(9):1304–1314

    Article  PubMed  Google Scholar 

  • Aydelotte MB, Raiss RX, Caterson B, Kuettner KE (1992) Influence of IL-1 on the morphology and proteoglycan metabolism of cultured bovine articular chondrocytes. Connect Tissue Res 28(1–2):143–159

    Article  PubMed  Google Scholar 

  • Blanco FJ, Lotz M (1995) IL-1-induced nitric oxide inhibits chondrocyte proliferation via 2. Exp Cell Res 218(1):319–325

    Article  PubMed  Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesise a functional extracellular matrix. J Orthop Res 10(6):745–758

    Article  PubMed  Google Scholar 

  • Chikama T, Nakamura M, Nishida T (1999) Up-regulation of integrin alpha5 by a C-terminus four-amino-acid sequence of substance P (phenylalanine-glycine-leucine-methionine-amide) synergistically with insulin-like growth factor-1 in SV-40 transformed human corneal epithelial cells. Biochem Biophys Res Commun 255(3):692–697

    Article  PubMed  Google Scholar 

  • Chowdhury TT, Bader DL, Lee DA (2001) Dynamic compression inhibits the synthesis of nitric oxide and PGE2by IL-1β stimulated chondrocytes cultured in agarose constructs. Biochem Biophys Res Commun 285(5):1168–1174

    Article  PubMed  Google Scholar 

  • Chowdhury TT, Bader DL, Lee DA (2003a) Dynamic compression counteracts IL-1β induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarth Cartil 11(9):688–696

    Article  Google Scholar 

  • Chowdhury TT, Bader DL, Shelton JC, Lee DA (2003b) Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys 417:105–111

    Article  Google Scholar 

  • Chowdhury TT, Salter DM, Bader DL, Lee DA (2004) Integrin-mediated mechanotransduction processes in TGFβ-stimulated monolayer-expanded human chondrocytes. Biochem Biophys Res Commun 318:873–881

    Article  PubMed  Google Scholar 

  • Clancy RM (1999) Nitric oxide alters chondrocyte function by disrupting cytoskeletal signalling complexes. Osteoarthr Cartil 7(4):399–400

    Article  PubMed  Google Scholar 

  • Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP (1994) Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 12(3):311–320

    Article  PubMed  Google Scholar 

  • Frenkel SR, Clancy RM, Ricci JL, Di Cesare PE, Rediske JJ, Abramson SB (1996) Effects of nitric oxide on chondrocyte migration, adhesion and cytoskeletal assembly. Arthritis Rheum 39(11):1905–1912

    Article  PubMed  Google Scholar 

  • Geng Y, Blanco FJ, Cornelisson M, Lotz M (1995) Regulation of COX-2 expression in normal human articular chondrocytes. J Immunol 155(2):796–801

    PubMed  Google Scholar 

  • Homandberg GA (1999) Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci 15(4):D713–D730

    Article  Google Scholar 

  • Jarvinen TA, Moilanen T, Jarvinen TL, Moilanen E (1995) Nitric oxide mediates IL-1 induced inhibition of GAG synthesis in rat articular cartilage. Mediators Inflamm 4:107–111

    Article  Google Scholar 

  • Jarvinen TA, Moilanen T, Jarvinen TL, Moilanen E (1996) Endogenous nitric oxide and PGE2 do not regulate the synthesis of each other in IL-1β stimulated rat articular cartilage. Inflammation 20(6):683–692

    Article  PubMed  Google Scholar 

  • Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, Kantlehner M, Goepfert C, Nies B (2002) RGD-peptides for tissue engineering of articular cartilage. Biomaterials 23(16):3455–3463

    Article  PubMed  Google Scholar 

  • Knight MM, Ghori SA, Lee DA, Bader DL (1998) Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Med Eng Phys 20(9):684–688

    Article  PubMed  Google Scholar 

  • Kurtis MS, Tu BP, Gaya OA, Mollenhauer J, Knudson W, Loeser RF, Knudson CB, Sah RL (2001) Mechanisms of chondrocyte adhesion to cartilage: role of β1-integrins, CD44 and annexin V. J Orthop Res 19(6):1122–1130

    Article  PubMed  Google Scholar 

  • Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15(2):181–188

    Article  PubMed  Google Scholar 

  • Lee DA, Knight MM (2004) Mechanical loading of chondrocytes embedded in 3D constructs: In vitro methods for assessment of morphological and metabolic response to compressive strain. In: Osteoarthritis: Sabatini, De Ceuninck, Pastoureau (eds) methods and protocols.Humana Press, pp 307–324, Totawa

  • Lee DA, Frean SP, Lees P, Bader DL (1998) Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose. Biochem Biophys Res Commun 251(2):580–585

    Article  PubMed  Google Scholar 

  • Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM (2000) Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and β-catenin in human articular chondrocytes after mechanical stimulation. J Bone Mineral Res 15:1501–1509

    Article  Google Scholar 

  • Loeser RF (1993) Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum 36(8):1103–1110

    Article  PubMed  Google Scholar 

  • Loeser RF (2000) Chondrocyte integrin expression and function. Biorheology 37:109–116

    PubMed  Google Scholar 

  • Loeser RF, Carlson CS, McGee MP (1995) Expression of β1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp Cell Res 217:248–257

    Article  PubMed  Google Scholar 

  • Lucchinetti E, Bhargava MM, Torzillil PA (2004) The effect of mechanical load on integrin subunits α5 and β1 in chondrocytes from mature and immature cartilage explants. Cell Tissue Res 315(3):385–391

    Article  PubMed  Google Scholar 

  • Manfield L, Jang D, Murrell GA (1996) Nitric oxide enhances cyclo-oxygenase activity in articular cartilage. Inflamm Res 45(5):254–258

    Article  PubMed  Google Scholar 

  • Mathy-Hartert M, Burton S, Deby-Dupont G, Devel P, Reginster JY, Henroitin Y (2005) Influence of oxygen tension on nitric oxide and PGE2 synthesis by bovine chondrocytes. Osteoarthr Cartil 13(1):74–79

    Article  PubMed  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Lee H, Nishida K, Caldwell H, Nuki G, Salter DM (1999) Integrin-regulated secretion of IL-4: a novel pathway of mechanotransduction in human articular chondrocytes. J Cell Biol 145:183–189

    Article  PubMed  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM (2000) Mechanotransduction via integrins and IL-4 results in altered aggrecan and MMP3 gene expression in normal but not in osteoarthritic human articular chondrocytes. Arthritis Rheum 43:2091–2099

    Article  PubMed  Google Scholar 

  • Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32(3):435–446

    Article  PubMed  Google Scholar 

  • Millward-Sadler SJ, Mackenzie A, Wright MO, Lee HS, Elliot K, Gerrard L, Fiskerstrand CE, Salter DM, Quinn JP (2003) Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction. Arthritis Rheum 48(1):146–156

    Article  PubMed  Google Scholar 

  • Miyamoto S, Teramoto H, Gutkind JS, Yamada KM (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosinekinase and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135(6):1633–1642

    Article  PubMed  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression. J Biomech Eng. 102(1):73–84

    Article  PubMed  Google Scholar 

  • Peters JH, Loredo GA, Benton HP (2002) Is osteoarthritis a “fibronectin-integrin imbalance disorder”? Osteoarthr Cartil 10(11):831–835

    Article  PubMed  Google Scholar 

  • Pichika R, Homandberg GA (2004) Fibronectin fragments elevate nitric oxide (NO) and inducible NO synthetase (iNOS) levels in bovine cartilage and iNOS inhibitors block fibronectin fragment mediated damage and promote repair. Inflamm Res 53(8):405–412

    Article  PubMed  Google Scholar 

  • Rao J, Otto WR (1992) Fluorimetric DNA assay for cell growth estimation. Anal Biochem 207:186–192

    Article  PubMed  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclo-oxygenase enzymes. Proc Natl Acad Sci USA 90(15):7240–7244

    Article  Google Scholar 

  • Setton LA, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartil 7(1):2–14

    Article  PubMed  Google Scholar 

  • Silver F, Bradica G, Tria A (2004) Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis. Matrix Biol 23(7):467–476

    Article  PubMed  Google Scholar 

  • Stefanovic-Racic M, Morales TI, Taskiran D, McIntyre LA, Evans CH (1996) The role of nitric oxide in proteoglycan turnover by bovine articular cartilage organ cultures. J Immunol 156(3):1213–1220

    PubMed  Google Scholar 

  • Stefanovic-Racic M, Mollers MO, Miller LA, Evans CH (1997) Nitric oxide and proteoglycan turnover in rabbit articular cartilage. J Orthop Res 15(3):442–449

    Article  PubMed  Google Scholar 

  • Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthr Cartil 5(5):331–341

    Article  PubMed  Google Scholar 

  • Taskiran D, Stefanovic-Racic M, Georgescu H, Evans C (1994) Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun 200(1):142–148

    Article  PubMed  Google Scholar 

  • Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, Jobanputra P, Nuki G, Salter DM (1997) Hyperpolarisation of culture human chondrocytes following cyclical pressure-induced strain: evidence of a role of α5β1 integrin as a mechanoreceptor. J Orthop Res 15(5):742–747

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, T.T., Appleby, R.N., Salter, D.M. et al. Integrin-mediated mechanotransduction in IL-1β stimulated chondrocytes. Biomech Model Mechanobiol 5, 192–201 (2006). https://doi.org/10.1007/s10237-006-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0032-3

Keywords

Navigation