Skip to main content

Advertisement

Log in

The effect of mechanical load on integrin subunits α5 and β1 in chondrocytes from mature and immature cartilage explants

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Articular cartilage is subjected to cyclic compressive stresses during joint loading. There is increasing experimental evidence that this loading is essential for the chondrocytes to maintain the functionality of the cartilage extracellular matrix (ECM) and that members of the integrin family of transmembrane receptors may play an important role in signal mechanotransduction between the ECM and chondrocytes. Of particular interest are the integrin subunits α5 and β1, which are known to form the receptor for fibronectin, an important ECM protein, and to be involved in mechanotransduction as well as in the regulation of cytokine production. In this study, we measured the amounts of the integrin subunits α5 and β1 in chondrocytes from young (immature) and adult (mature) bovine articular cartilage explants which were subjected to a continuously applied cyclic compressive stress of 1 MPa for 6 and 24 h. The integrin content per chondrocyte was measured immediately after load cessation by flow cytometry following matrix digestion to release the cells. We found that a mechanical stress induced an increase in the number of integrin subunit α5 in immature and mature cartilage but not in the integrin subunit β1 content. The integrin contents were greatest after 6 h of loading and returned to control levels after 24 h of unloading. The results of this study supply further experimental evidence that chondrocytes respond to changes in their mechanical environment and that the integrin α5β1 may act as a mechanical signal transducer between the chondrocyte and the ECM for the modulation of cellular physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3

Similar content being viewed by others

References

  • Arner EC, Tortorella MD (1995) Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum 38:1304–1314

    CAS  PubMed  Google Scholar 

  • Bewsey K, Wen C, Purple C, Homandberg G (1996) Fibronectin fragments induce the expression of stromelysin-1 mRNA and protein in bovine chondrocytes in monolayer culture. Biochim Biophys Acta 1317:55–64

    Article  CAS  PubMed  Google Scholar 

  • Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res 11:717–729

    CAS  PubMed  Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497–1508

    CAS  PubMed  Google Scholar 

  • Chen CT, Burton Wurster N, Lust G, Bank RA, Tekoppele JM (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17:870–879

    CAS  PubMed  Google Scholar 

  • Chen CT, Bhargava M, Lin PM, Torzilli PA (2003) Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. J Orthop Res 21:888–898

    Article  CAS  PubMed  Google Scholar 

  • Enomoto M, Leboy PS, Menko AS, Boettiger D (1993) Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp Cell Res 205:276–285

    Article  CAS  PubMed  Google Scholar 

  • Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, Kurisu K, Suzuki F (1997) Involvement of alpha 5 beta 1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Min Res 12:1124–1132

    CAS  Google Scholar 

  • Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Engr 2:691–713

    Article  CAS  Google Scholar 

  • Guilak F, Meyer BC, Ratcliffe A, Mow VC (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartil 2:91–101

    CAS  Google Scholar 

  • Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, Mann RW (1989) Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg [Am] 71:1378–1386

    Google Scholar 

  • Homandberg G (1999) Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci 4:D713–730

    CAS  PubMed  Google Scholar 

  • Homandberg G, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321:751–757

    CAS  PubMed  Google Scholar 

  • Jennings L, Wu L, King K, Hammerle H, Cs-Szabo G, Mollenhauer J (2001) The effects of collagen fragments on the extracellular matrix metabolism of bovine and human chondrocytes. Conn Tissue Res 42:71–86

    CAS  Google Scholar 

  • Kim YJ, Bonassar LJ, Grodzinsky AJ (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech 28:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Knight MM, Ghori SA, Lee DA, Bader DL (1998) Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Med Eng Phys 20:684–688

    Article  CAS  PubMed  Google Scholar 

  • Korver TH, van de Stadt RJ, Kiljan E, van Kampen GP, van der Korst JK (1992) Effects of loading on the synthesis of proteoglycans in different layers of anatomically intact articular cartilage in vitro. J Rheumatol 19:905–912

    CAS  PubMed  Google Scholar 

  • Levin AS, Chen CT, Torzilli PA (2002) Cell death in cyclically loaded cartilage explants: effects of tissue maturation. Trans Orthop Res Soc, p 107

    Google Scholar 

  • Loeser RF (1993) Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum 36:1103–1110

    CAS  PubMed  Google Scholar 

  • Loeser RF (1994) Modulation of integrin-mediated attachment of chondrocytes to extracellular matrix proteins by cations, retinoic acid, and transforming growth factor beta. Exp Cell Res 211:17–23

    Article  CAS  PubMed  Google Scholar 

  • Loeser RF (1997) Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum 40:270–276

    CAS  PubMed  Google Scholar 

  • Lucchinetti E, Adams CS, Horton WE Jr, Torzilli PA (2002) Cartilage viability after repetitive loading: a preliminary report. Osteoarthritis Cartil 10:71–81

    Article  CAS  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Lee H, Caldwell H, Nuki G, Salter DM (2000) Altered electrophysiological responses to mechanical stimulation and abnormal signalling through alpha5beta1 integrin in chondrocytes from osteoarthritic cartilage. Osteoarthritis Cartil 8:272–278

    Article  CAS  Google Scholar 

  • Palmoski MJ, Brandt KD (1984) Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum 27:675–681

    CAS  PubMed  Google Scholar 

  • Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10:610–620

    CAS  PubMed  Google Scholar 

  • Pulai JI, Del Carlo M Jr, Loeser RF (2002) The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 46:1528–1535

    Article  CAS  PubMed  Google Scholar 

  • Reid DL, Aydelotte MB, Mollenhauer J (2000) Cell attachment, collagen binding, and receptor analysis on bovine articular chondrocytes. J Orthop Res 18:364–373

    CAS  PubMed  Google Scholar 

  • Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636

    CAS  PubMed  Google Scholar 

  • Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31:231–234

    CAS  PubMed  Google Scholar 

  • Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506

    CAS  PubMed  Google Scholar 

  • Schneiderman R, Keret D, Maroudas A (1986) Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study. J Orthop Res 4:393–408

    CAS  PubMed  Google Scholar 

  • Steinmeyer J, Ackermann B (1999) The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants. Res Exp Med 198:247–260

    Article  CAS  Google Scholar 

  • Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 240:216–221

    Article  CAS  PubMed  Google Scholar 

  • Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthritis Cartil 5:331–341

    CAS  Google Scholar 

  • Torzilli P, Grigiene R, Huang C, Friedman S, Doty SB, Boskey A, Lust G (1997) Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J Biomech 30:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tuckwell DS, Ayad S, Grant ME, Takigawa M, Humphries MJ (1994) Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha2beta1 binding, and mediation of adhesion to denatured collagen by a novel alpha5beta1-fibronectin bridge. J Cell Sci 107:993–1005

    CAS  PubMed  Google Scholar 

  • Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    CAS  Google Scholar 

  • Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    CAS  PubMed  Google Scholar 

  • Wilkins RJ, Browning JA, Urban JP (2000) Chondrocyte regulation by mechanical load. Biorheology 37:67–74

    CAS  Google Scholar 

  • Wong M, Wuethrich P, Buschmann M, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    CAS  PubMed  Google Scholar 

  • Wong M, Siegrist M, Cao X (1999) Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 18:391–399

    Article  CAS  PubMed  Google Scholar 

  • Woods VL Jr, Schreck PJ, Gesink DS, Pacheco HO, Amiel D, Akeson WH, Lotz M (1994) Integrin expression by human articular chondrocytes. Arthritis Rheum 37:537–544

    CAS  PubMed  Google Scholar 

  • Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci 90:61–71

    CAS  PubMed  Google Scholar 

  • Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256:383–391

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Homandberg GA (1993) Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta 1182:189–196

    Article  CAS  PubMed  Google Scholar 

  • Xie DL, Meyers R, Homandberg GA (1992) Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 19:1448–1452

    CAS  PubMed  Google Scholar 

  • Yonezawa I, Kato K, Yagita H, Yamauchi Y, Okumura K (1996) VLA-5-mediated interaction with fibronectin induces cytokine production by human chondrocytes. Biochem Biophys Res Commun 219:261–265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Lucchinetti.

Additional information

This work was supported by NIH grant AR45748 to PAT and the HSS MacArthur Cartilage Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucchinetti, E., Bhargava, M.M. & Torzilli, P.A. The effect of mechanical load on integrin subunits α5 and β1 in chondrocytes from mature and immature cartilage explants. Cell Tissue Res 315, 385–391 (2004). https://doi.org/10.1007/s00441-003-0836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0836-8

Keywords

Navigation