Skip to main content
Log in

Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form.

In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Austin, P.S. Krishnaprasad, L. Wang, Almost-Poisson integration of rigid body systems, J. Comput. Phys. 107, 105–117 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  2. A.I. Bobenko, Y.B. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semi-direct products, Lett. Math. Phys. 49, 79–93 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  3. A.I. Bobenko, Y.B. Suris, Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top, Commun. Math. Phys. 204, 147–188 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bou-Rabee, Hamilton–Pontryagin integrators on Lie groups, Ph.D. thesis, California Institute of Technology (2007).

  5. J.R. Cardoso, F. Leite, The Moser–Veselov equation, Linear Algebra Appl. 360, 237–248 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Cendra, J.E. Marsden, S. Pekarsky, T.S. Ratiu, Variational principles for Lie–Poisson and Hamilton–Poincaré equations, Mosc. Math. J. 3, 833–867 (2003).

    MATH  MathSciNet  Google Scholar 

  7. K. Engø, S. Faltinsen, Numerical integration of Lie–Poisson systems while preserving coadjoint orbits and energy, SIAM J. Numer. Anal. 39, 128–145 (2001).

    Article  MathSciNet  Google Scholar 

  8. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31 (Springer, Berlin, 2006).

    MATH  Google Scholar 

  9. D.D. Holm, J.E. Marsden, T.S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137, 1–81 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000).

    Article  Google Scholar 

  11. L. Kharevych, Weiwei, Y. Tong, E. Kanso, J.E. Marsden, P. Schroder, M. Desbrun, Geometric, variational integrators for computer animation, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2006.

  12. S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A Math. Gen. 39, 5509–5519 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Lee, M. Leok, N.H. McClamroch, Lie group variational integrators for the full body problem, Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Leok, N.H. McClamroch, T. Lee, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum, in Proceedings of IEEE Conference on Control Applications (2005), pp. 962–967.

  15. A. Lew, J.E. Marsden, M. Ortiz, M. West, Variational time integrators, Int. J. Numer. Methods Eng. 60, 153–212 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Lewis, J.C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on lie groups, J. Nonlinear Sci 4, 253–299 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Lewis, J.C. Simo, Conserving algorithms for the N-dimensional rigid body, Fields Inst. Commun. 10, 121–139 (1996).

    MathSciNet  Google Scholar 

  18. S. Leyendecker, J.E. Marsden, M. Ortiz, Variational integrators for constrained mechanical systems, Preprint (2007).

  19. S. Leyendecker, S. Ober-Blöbaum, J.E. Marsden, M. Ortiz, Discrete mechanics and optimal control for constrained multibody dynamics, in Proceedings of the 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. ASME International Design Engineering Technical Conferences (Proceedings of IDETC/MSNDC), 2007, pp. 1–10.

  20. G.H. Livens, On Hamilton’s principle and the modified function in analytical dynamics, Proc. R. Soc. Edinb. 39, 113 (1919).

    Google Scholar 

  21. J.E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity 12, 1647–1662 (1998).

    Article  MathSciNet  Google Scholar 

  22. J.E. Marsden, J. Scheurle, The reduced Euler–Lagrange equations, Fields Inst. Commun. 1, 139–164 (1993).

    MathSciNet  Google Scholar 

  23. J.E. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer. 10, 357–514 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Mclachlan, C. Scovel, Equivariant constrained symplectic integration, J. Nonlinear Sci. 5, 233–256 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Moser, A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys. 139, 217–243 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT 43, 572–587 (1995).

    Article  MathSciNet  Google Scholar 

  27. H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT 38, 92–111 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Munthe-Kaas, B. Owren, Computations in a free Lie algebra, Philos. Trans. R. Soc. A 357, 957–982 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Munthe-Kaas, A. Zanna, Numerical Integration of Differential Equations on Homogeneous Manifolds (Springer, Berlin, 1997), pp. 305–315.

    Google Scholar 

  30. J.C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions—a geometrically exact approach, Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  31. J.C. Simo, T.S. Wong, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum, Int. J. Numer. Methods Eng. 31, 19–52 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  32. Y.B. Suris, Hamiltonian methods of Runge–Kutta type and their variational interpretation, Math. Model. 2, 78–87 (1990).

    MATH  MathSciNet  Google Scholar 

  33. J.M. Wendlandt, J.E. Marsden, Mechanical integrators derived from a discrete variational principle, Physica D 106, 223–246 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Yoshimura, J.E. Marsden, Dirac structures and Lagrangian mechanics Part I: Implicit Lagrangian systems, J. Geom. Phys. 57, 133–156 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. Geom. Phys. 57, 209–250 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawaf Bou-Rabee.

Additional information

Communicated by Arieh Iserles.

Research partially supported by the National Science Foundation through NSF grant DMS-0204474.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bou-Rabee, N., Marsden, J.E. Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties. Found Comput Math 9, 197–219 (2009). https://doi.org/10.1007/s10208-008-9030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-008-9030-4

Keywords

Mathematics Subject Classification (2000)

Navigation