Skip to main content
Log in

Discrete versions of some classical integrable systems and factorization of matrix polynomials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Discrete versions of several classical integrable systems are investigated, such as a discrete analogue of the higher dimensional force-free spinning top (Euler-Arnold equations), the Heisenberg chain with classical spins and a new discrete system on the Stiefel manifold. The integrability is shown with the help of a Lax-pair representation which is found via a factorization of certain matrix polynomials. The complete description of the dynamics is given in terms of Abelian functions; the flow becomes linear on a Prym variety corresponding to a spectral curve. The approach is also applied to the billiard problem in the interior of anN-dimensional ellipsoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veselov, A.P.: Integration systems with discrete time and difference operators. Funct. Anal. Appl.22, 1–13 (1988) (Russian)

    Article  MATH  MathSciNet  Google Scholar 

  2. Faddeev, L.D., Takhtadjan, L.A.: The quantum inverse scattering method and XYZ Heisenberg model. Uspekhi Mat. Nauk.34, 13–63 (1979) (Russian)

    MathSciNet  Google Scholar 

  3. Baxter, R.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. Ann. Phys.76, 1–71 (1973)

    Google Scholar 

  4. Pokrovsky, V.L., Khokhlachev, S.B.: Nonhomogeneous stationary states in Heisenberg model. Pisma v JETP22, 371–373 (1975) (Russian)

    Google Scholar 

  5. Granovsky, Ya.I., Zhedanov, A.S.: Periodic structures on quantum spin chain. JETP89, 2156–2163 (1985) (Russian)

    Google Scholar 

  6. Granovsky, Ya.I., Zhedanov, A.S.: The solution of domain type in a magnetic chain. Theor. Math. Phys.71, 145–153 (1987) (Russian)

    Google Scholar 

  7. Veselov, A.P.: The integration of the stationary problem for classical spin chains. Theor. Math. Phys.71, 154–159 (1987) (Russian)

    Article  MathSciNet  Google Scholar 

  8. Moser, J.: Various aspects of integrable hamiltonian systems. In: Proc. CIME Conf., Bressanone, Italy, June 1978, Prog. Math., Vol. 8. Basel: Birkhäuser 1980

    Google Scholar 

  9. Moser, J.: Integrable hamiltonian systems and spectral theory. Pisa: Lezioni Fermiane 1981

    Google Scholar 

  10. Moser, J.: Geometry of quadric and spectral theory. Chern Symposium 1979, Berkeley, pp. 147–188. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  11. Symes, W.: TheQR algorithm and scattering for the finite nonperiodic Toda lattice. Physica4D, 275–280 (1982)

    ADS  MathSciNet  Google Scholar 

  12. Deift, P., Li, L.C., Tomei, C.: Matrix factorizations and integrable systems. Commun. Pure Appl. Math.42, 443–521 (1989)

    MathSciNet  Google Scholar 

  13. Gohberg, I., Lancaster, P., Rodman, L.: Matrix polynomials. New York: Academic Press 1982

    Google Scholar 

  14. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations ofKdV type, finite-zone linear operators and abelian varieties. Russ. Math. Surv.31, (1), 59–146 (1976)

    Article  MathSciNet  Google Scholar 

  15. Dubrovin, B.A.: Completely integrable hamiltonian system associated with matrix operators and abelian varieties. Funct. Anal. Appl.11, 28–41 (1977)

    MATH  MathSciNet  Google Scholar 

  16. Knörrer, H.: Geodesic on quadrics and a mechanical problem of Neumann. J. Reine Angew. Math.334, 69–78 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Novikov, S.P.: Periodic problem forKdV equation, I. Funct. Anal. Appl.8 (3), 54–66 (1974)

    MATH  Google Scholar 

  18. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras and curves. Adv. Math.38, 267–317 (1980)

    Google Scholar 

  19. Reiman, A., Semenov-Tyan-Shansky, M.: Reduction of hamiltonian systems, affine Lie algebras and Lax equations. Invent. Math.54, 81–101 (1979)

    ADS  MathSciNet  Google Scholar 

  20. Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  21. Pantazis, S.: Prym varieties and the geodesic flow onSO(n). Math. Ann.273, 297–316 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Manakov, S.V.: Remarks on the integration of the Euler equations ofn-dimensional rigid body. Funct. Anal. Appl.10 (4), 93–94 (1976) (Russian)

    MATH  MathSciNet  Google Scholar 

  23. Dubrovin, B.A.: Theory of operators and real algebraic geometry. Lecture Notes in Math., Vol. 1334, pp. 42–59, Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  24. Bobenko, A.I.: Real algebraic-geometry solutions of Landau-Lifschitz equation in terms of Prym theta-functions. Funct. Anal. Appl.19, 6–19 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jacobi, C.G.J.: Sur la rotation d'un corps. In: Gesammelte Werke, 2. Band (1881) 291–352

  26. Adams, M.R., Harnad, J., Previato, E.: Isospectral hamiltonian flows in finite and infinite dimensions. Commun. Math. Phys.117, 451–500 (1988)

    Article  MathSciNet  Google Scholar 

  27. Neumann, C.: De problemato quodam mechanico quod ad primam integralium ultraellipticorum classem revocatur. J. Reine Angew. Math.56, 46–63 (1859)

    MATH  Google Scholar 

  28. Veselov, A.P.: Geometry of hamiltonian systems, connected with nonlinear partial differential equations. Ph. D. Thesis, Moscow State University 1981

  29. Veselov, A.P.: Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space. Reprint of the Forschungsinstitut für Mathematik, ETH Zürich 1989

  30. Libermann, P., Marle, C.M.: Symplectic geometry and analytic mechanics. Dordrecht, Holland: Reidel 1987 (see Chap. IV, Theorem 4.8)

    Google Scholar 

  31. Abrahams, R., Marsden, J.E.: Foundations of mechanics. New York: Benjamin Cummings 1978 (in particular, pp. 302–303)

    Google Scholar 

  32. Deift, P.A., Li, L.C., Tomei, C.: Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions. Preprint, Courant Inst. Math. Sci., November 1990

  33. Mishchenko, A.S., Fomenko, A.T.: Euler equations on finite dimensional Lie groups. Izvestiya Akad. Nauk SSR, Ser. Math.42, 396–415 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. N. Mather

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, J., Veselov, A.P. Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun.Math. Phys. 139, 217–243 (1991). https://doi.org/10.1007/BF02352494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352494

Keywords

Navigation