Skip to main content
Log in

Cochlear Health and Cochlear-implant Function

  • Review
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. NIDCD (2019) NIDCD fact sheet, hearing and balance: cochlear implants. Available from: https://www.nidcd.nih.gov/health/cochlear-implants. Accessed 24 Jun 2020

  2. Gubbels SP, Gartrell BC, Ploch JL, Hanson KD (2017) Can routine office-based audiometry predict cochlear implant evaluation results? Laryngoscope 127:216–222. https://doi.org/10.1002/lary.26066

    Article  PubMed  Google Scholar 

  3. Zwolan TA, Kallogjeri D, Firszt JB, Buchman CA (2020) Assessment of cochlear implants for adult medicare beneficiaries aged 65 years or older who meet expanded indications of open-set sentence recognition: a multicenter nonrandomized clinical trial. JAMA Otolaryngol Head Neck Surg 146:1–9. https://doi.org/10.1001/jamaoto.2020.2286

    Article  PubMed Central  Google Scholar 

  4. Zwolan TA, Schvartz-Leyzac KC, Pleasant T (2020) Development of a 60/60 guideline for referring adults for a traditional cochlear implant candidacy evaluation. Otol Neurotol 41:895–900. https://doi.org/10.1097/mao.0000000000002664

    Article  PubMed  Google Scholar 

  5. Varadarajan VV, Sydlowski SA, Li MM, Anne S, Adunka OF (2021) Evolving criteria for adult and pediatric cochlear implantation. Ear Nose Throat J 100:31–37. https://doi.org/10.1177/0145561320947258

    Article  PubMed  Google Scholar 

  6. Niparko JK et al (2010) Spoken language development in children following cochlear implantation. JAMA 303:1498–1506. https://doi.org/10.1001/jama.2010.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holden LK et al (2013) Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 34:342–360. https://doi.org/10.1097/AUD.0b013e3182741aa7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barnard JM et al (2015) A prospective longitudinal study of U.S. children unable to achieve open-set speech recognition 5 years after cochlear implantation. Otol Neurotol 36:985–992. https://doi.org/10.1097/mao.0000000000000723

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geers AE, Mitchell CM, Warner-Czyz A, Wang NY, Eisenberg LS (2017) Early sign language exposure and cochlear implantation benefits. Pediatrics. https://doi.org/10.1542/peds.2016-3489

    Article  PubMed  Google Scholar 

  10. Thomas ES, Zwolan TA (2019) Communication mode and speech and language outcomes of young cochlear implant recipients: a comparison of auditory-verbal, oral communication, and total communication. Otol Neurotol 40:e975–e983. https://doi.org/10.1097/mao.0000000000002405

    Article  PubMed  Google Scholar 

  11. Eshraghi AA et al (2012) The cochlear implant: historical aspects and future prospects. Anat Rec (Hoboken) 295:1967–1980. https://doi.org/10.1002/ar.22580

    Article  PubMed  Google Scholar 

  12. Balkany T, Hodges AV, Luntz M (1996) Update on cochlear implantation. Otolaryngol Clin North Am 29:277–289

    Article  CAS  PubMed  Google Scholar 

  13. Firszt JB, Holden LK, Reeder RM, Cowdrey L, King S (2012) Cochlear implantation in adults with asymmetric hearing loss. Ear Hear 33:521–533. https://doi.org/10.1097/AUD.0b013e31824b9dfc

    Article  PubMed  PubMed Central  Google Scholar 

  14. Firszt JB, Reeder RM, Holden LK, Dwyer NY (2018) Results in adult cochlear implant recipients with varied asymmetric hearing: a prospective longitudinal study of speech recognition, localization, and participant report. Ear Hear 39:845–862. https://doi.org/10.1097/aud.0000000000000548

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carlson ML et al (2015) Evidence for the expansion of pediatric cochlear implant candidacy. Otol Neurotol 36:43–50. https://doi.org/10.1097/mao.0000000000000607

    Article  PubMed  Google Scholar 

  16. Holder JT, Reynolds SM, Sunderhaus LW, Gifford RH (2018) Current profile of adults presenting for preoperative cochlear implant evaluation. Trends Hear 22:2331216518755288. https://doi.org/10.1177/2331216518755288

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown CJ et al (2015) Cortical auditory evoked potentials recorded from nucleus hybrid cochlear implant users. Ear Hear 36:723–732. https://doi.org/10.1097/aud.0000000000000206

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han JH, Dimitrijevic A (2020) Acoustic change responses to amplitude modulation in cochlear implant users: relationships to speech perception. Front Neurosci 14:124. https://doi.org/10.3389/fnins.2020.00124

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han JH, Lee J, Lee HJ (2020) Noise-induced change of cortical temporal processing in cochlear implant users. Clin Exp Otorhinolaryngol. https://doi.org/10.21053/ceo.2019.01081

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kirby AE, Middlebrooks JC (2012) Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. J Assoc Res Otolaryngol 13:67–80. https://doi.org/10.1007/s10162-011-0293-0

    Article  PubMed  Google Scholar 

  21. Middlebrooks JC (2008) Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. J Neurophysiol 100:76–91. https://doi.org/10.1152/jn.01109.2007

    Article  PubMed  PubMed Central  Google Scholar 

  22. Middlebrooks JC (2018) Chronic deafness degrades temporal acuity in the electrically stimulated auditory pathway. J Assoc Res Otolaryngol 19:541–557. https://doi.org/10.1007/s10162-018-0679-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Middlebrooks JC (2008) Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex. J Neurophysiol 100:92–107. https://doi.org/10.1152/jn.01114.2007

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olds C et al (2016) Cortical activation patterns correlate with speech understanding after cochlear implantation. Ear Hear 37:e160–e172. https://doi.org/10.1097/aud.0000000000000258

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheperle RA, Abbas PJ (2015) Peripheral and central contributions to cortical responses in cochlear implant users. Ear Hear 36:430–440. https://doi.org/10.1097/aud.0000000000000143

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scheperle RA, Abbas PJ (2015) Relationships among peripheral and central electrophysiological measures of spatial and spectral selectivity and speech perception in cochlear implant users. Ear Hear 36:441–453. https://doi.org/10.1097/aud.0000000000000144

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie Z, Stakhovskaya O, Goupell MJ, Anderson S (2021) Aging effects on cortical responses to tones and speech in adult cochlear-implant users. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-021-00804-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Claes AJ et al (2018) Impaired cognitive functioning in cochlear implant recipients over the age of 55 years: a cross-sectional study using the repeatable battery for the assessment of neuropsychological status for hearing-impaired individuals (RBANS-H). Front Neurosci 12:580. https://doi.org/10.3389/fnins.2018.00580

    Article  PubMed  PubMed Central  Google Scholar 

  29. Claes AJ et al (2016) The repeatable battery for the assessment of neuropsychological status for hearing impaired individuals (RBANS-H) before and after cochlear implantation: a protocol for a prospective, longitudinal cohort study. Front Neurosci 10:512. https://doi.org/10.3389/fnins.2016.00512

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cosetti MK et al (2016) Neurocognitive testing and cochlear implantation: insights into performance in older adults. Clin Interv Aging 11:603–613. https://doi.org/10.2147/cia.s100255

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moberly AC, Reed J (2019) Making sense of sentences: top-down processing of speech by adult cochlear implant users. J Speech Lang Hear Res 62:2895–2905. https://doi.org/10.1044/2019_jslhr-h-18-0472

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moberly AC, Houston DM, Castellanos I (2016) Non-auditory neurocognitive skills contribute to speech recognition in adults with cochlear implants. Laryngoscope Investig Otolaryngol 1:154–162. https://doi.org/10.1002/lio2.38

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shrestha BR et al (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–1246.e17. https://doi.org/10.1016/j.cell.2018.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Webster M, Webster DB (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res 212:17–30. https://doi.org/10.1016/0006-8993(81)90028-7

    Article  CAS  PubMed  Google Scholar 

  35. Hinojosa R, Marion M (1983) Histopathology of profound sensorineural deafness. Ann N Y Acad Sci 405:459–484

    Article  CAS  PubMed  Google Scholar 

  36. Nadol JB Jr, Young YS, Glynn RJ (1989) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:411–416. https://doi.org/10.1177/000348948909800602

    Article  PubMed  Google Scholar 

  37. Nadol JB Jr (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228

    Article  PubMed  Google Scholar 

  38. Nadol JB Jr, Eddington DK (2006) Histopathology of the inner ear relevant to cochlear implantation. Adv Otorhinolaryngol 64:31–49. https://doi.org/10.1159/000094643

    Article  PubMed  Google Scholar 

  39. Pfingst BE et al (2011) Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health. J Acoust Soc Am 130:3954–3968. https://doi.org/10.1121/1.3651820

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ramekers D et al (2014) Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. J Assoc Res Otolaryngol 15:187–202. https://doi.org/10.1007/s10162-013-0440-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schvartz-Leyzac KC et al (2019) Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Hear Res. https://doi.org/10.1016/j.heares.2019.107809

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schvartz-Leyzac KC et al (2020) How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. J Acoust Soc Am 148

  43. Pfingst BE et al (2017) Neurotrophin gene therapy in deafened ears with cochlear implants: long-term effects on nerve survival and functional measures. J Assoc Res Otolaryngol 18:731–750. https://doi.org/10.1007/s10162-017-0633-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhou N, Pfingst BE (2014) Relationship between multipulse integration and speech recognition with cochlear implants. J Acoust Soc Am 136:1257. https://doi.org/10.1121/1.4890640

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schvartz-Leyzac KC, Pfingst BE (2018) Assessing the relationship between the electrically evoked compound action potential and speech recognition abilities in bilateral cochlear implant recipients. Ear Hear 39:344–358. https://doi.org/10.1097/AUD.0000000000000490

    Article  PubMed  PubMed Central  Google Scholar 

  46. Spoendlin H (1975) Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 79:266–275. https://doi.org/10.3109/00016487509124683

    Article  CAS  PubMed  Google Scholar 

  47. Tong L et al (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35:7878–7891. https://doi.org/10.1523/jneurosci.2179-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kurioka T et al (2016) Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience 332:242–257. https://doi.org/10.1016/j.neuroscience.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  49. Goycoolea MV, Stypulkowski P, Muchow DC (1990) Ultrastructural studies of the peripheral extensions (dendrites) of type I ganglion cells in the cat. Laryngoscope 100:19–24. https://doi.org/10.1288/00005537-199002001-00002

    Article  CAS  PubMed  Google Scholar 

  50. Ramekers D, Klis SFL, Versnel H (2020) Simultaneous rather than retrograde spiral ganglion cell degeneration following ototoxically induced hair cell loss in the guinea pig cochlea. Hear Res 390:107928. https://doi.org/10.1016/j.heares.2020.107928

    Article  PubMed  Google Scholar 

  51. Felder E, Kanonier G, Scholtz A, Rask-Andersen H, Schrott-Fischer A (1997) Quantitative evaluation of cochlear neurons and computer-aided three-dimensional reconstruction of spiral ganglion cells in humans with a peripheral loss of nerve fibres. Hear Res 105:183–190. https://doi.org/10.1016/s0378-5955(96)00209-2

    Article  CAS  PubMed  Google Scholar 

  52. van den Honert C, Stypulkowski PH (1984) Physiological properties of the electrically stimulated auditory nerve. II Single fiber recordings Hear Res 14:225–243. https://doi.org/10.1016/0378-5955(84)90052-2

    Article  PubMed  Google Scholar 

  53. Heshmat A et al (2020) Dendritic degeneration of human auditory nerve fibers and its impact on the spiking pattern under regular conditions and during cochlear implant stimulation. Front Neurosci 14:599868. https://doi.org/10.3389/fnins.2020.599868

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kroon S et al (2017) Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss. Hear Res 345:79–87. https://doi.org/10.1016/j.heares.2017.01.005

    Article  PubMed  Google Scholar 

  55. Resnick JM, Rubinstein JT (2021) Simulated auditory fiber myelination heterogeneity desynchronizes population responses to electrical stimulation limiting inter-aural timing difference representation. J Acoust Soc Am 149:934. https://doi.org/10.1121/10.0003387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wise AK, Pujol R, Landry TG, Fallon JB, Shepherd RK (2017) Structural and ultrastructural changes to type i spiral ganglion neurons and schwann cells in the deafened guinea pig cochlea. J Assoc Res Otolaryngol 18:751–769. https://doi.org/10.1007/s10162-017-0631-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vink HA, Versnel H, Kroon S, Klis SFL, Ramekers D (2021) BDNF-mediated preservation of spiral ganglion cell peripheral processes and axons in comparison to that of their cell bodies. Hear Res 400:108114. https://doi.org/10.1016/j.heares.2020.108114

    Article  PubMed  Google Scholar 

  58. Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153:43–63

    Article  CAS  PubMed  Google Scholar 

  59. Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89:335–346

    Article  CAS  PubMed  Google Scholar 

  60. Santos F, Nadol JB (2017) Temporal bone histopathology of furosemide ototoxicity. Laryngoscope Investig Otolaryngol 2:204–207. https://doi.org/10.1002/lio2.108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Quesnel AM et al (2016) Delayed loss of hearing after hearing preservation cochlear implantation: human temporal bone pathology and implications for etiology. Hear Res 333:225–234. https://doi.org/10.1016/j.heares.2015.08.018

    Article  PubMed  Google Scholar 

  62. Wu PZ et al (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20. https://doi.org/10.1016/j.neuroscience.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  63. Irving S et al (2014) Electroacoustic stimulation: now and into the future. Biomed Res Int 2014:350504. https://doi.org/10.1155/2014/350504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Auinger AB et al (2017) Masking release with changing fundamental frequency: electric acoustic stimulation resembles normal hearing subjects. Hear Res 350:226–234. https://doi.org/10.1016/j.heares.2017.05.004

    Article  PubMed  Google Scholar 

  65. Tejani VD, Brown CJ (2020) Speech masking release in hybrid cochlear implant users: roles of spectral and temporal cues in electric-acoustic hearing. J Acoust Soc Am 147:3667. https://doi.org/10.1121/10.0001304

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kang SY et al (2010) Effects of hearing preservation on psychophysical responses to cochlear implant stimulation. J Assoc Res Otolaryngol 11:245–265. https://doi.org/10.1007/s10162-009-0194-7

    Article  PubMed  Google Scholar 

  67. Zanetti D, Nassif N, De Zinis LR (2015) Factors affecting residual hearing preservation in cochlear implantation. Acta Otorhinolaryngol Ital 35:433–441. https://doi.org/10.14639/0392-100x-619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carlson ML et al (2017) Hearing preservation in pediatric cochlear implantation. Otol Neurotol 38:e128–e133. https://doi.org/10.1097/mao.0000000000001444

    Article  PubMed  Google Scholar 

  69. Thompson NJ et al (2019) Electric-acoustic stimulation after reimplantation: hearing preservation and speech perception. Otol Neurotol 40:e94–e98. https://doi.org/10.1097/mao.0000000000002094

    Article  PubMed  Google Scholar 

  70. Kamakura T, O’Malley JT, Nadol JB Jr (2018) Preservation of cells of the organ of Corti and innervating dendritic processes following cochlear implantation in the human: an immunohistochemical study. Otol Neurotol 39:284–293. https://doi.org/10.1097/mao.0000000000001686

    Article  PubMed  PubMed Central  Google Scholar 

  71. Abbas PJ, Tejani VD, Scheperle RA, Brown CJ (2017) Using neural response telemetry to monitor physiological responses to acoustic stimulation in hybrid cochlear implant users. Ear Hear 38:409–425. https://doi.org/10.1097/aud.0000000000000400

    Article  PubMed  PubMed Central  Google Scholar 

  72. Choudhury B et al (2012) Intraoperative round window recordings to acoustic stimuli from cochlear implant patients. Otol Neurotol 33:1507–1515. https://doi.org/10.1097/MAO.0b013e31826dbc80

    Article  PubMed  PubMed Central  Google Scholar 

  73. DeMason C et al (2012) Electrophysiological properties of cochlear implantation in the gerbil using a flexible array. Ear Hear 33:534–542. https://doi.org/10.1097/AUD.0b013e3182498c28

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tejani VD et al (2021) Residual hair cell responses in electric-acoustic stimulation cochlear implant users with complete loss of acoustic hearing after implantation. J Assoc Res Otolaryngol 22:161–176. https://doi.org/10.1007/s10162-021-00785-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sato M, Baumhoff P, Kral A (2016) Cochlear implant stimulation of a hearing ear generates separate electrophonic and electroneural responses. J Neurosci 36:54–64. https://doi.org/10.1523/jneurosci.2968-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Imsiecke M, Krüger B, Büchner A, Lenarz T, Nogueira W (2018) Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing. Hear Res 364:25–37. https://doi.org/10.1016/j.heares.2018.04.003

    Article  PubMed  Google Scholar 

  77. Kipping D, Krüger B, Nogueira W (2020) The role of electroneural versus electrophonic stimulation on psychoacoustic electric-acoustic masking in cochlear implant users with residual hearing. Hear Res 395:108036. https://doi.org/10.1016/j.heares.2020.108036

    Article  PubMed  Google Scholar 

  78. McAnally KI, Clark GM, Syka J (1993) Hair cell mediated responses of the auditory nerve to sinusoidal electrical stimulation of the cochlea in the cat. Hear Res 67:55–68. https://doi.org/10.1016/0378-5955(93)90232-p

    Article  CAS  PubMed  Google Scholar 

  79. Nuttall AL, Ren T (1995) Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hear Res 92:170–177. https://doi.org/10.1016/0378-5955(95)00216-2

    Article  CAS  PubMed  Google Scholar 

  80. Le Prell CG, Kawamoto K, Raphael Y, Dolan DF (2006) Electromotile hearing: acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleae. J Acoust Soc Am 120:3889–3900. https://doi.org/10.1121/1.2359238

    Article  PubMed  Google Scholar 

  81. Wilson BS, Finley CC, Lawson DT, Zerbi M (1997) Temporal representations with cochlear implants. Am J Otol 18:S30–S34

    CAS  PubMed  Google Scholar 

  82. Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118. https://doi.org/10.1016/s0378-5955(98)00185-3

    Article  CAS  PubMed  Google Scholar 

  83. Hu N et al (2003) Auditory response to intracochlear electric stimuli following furosemide treatment. Hear Res 185:77–89

    Article  CAS  PubMed  Google Scholar 

  84. Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410. https://doi.org/10.1523/JNEUROSCI.4678-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rask-Andersen H, Liu W, Linthicum F (2010) Ganglion cell and ‘dendrite’ populations in electric acoustic stimulation ears. Adv Otorhinolaryngol 67:14–27. https://doi.org/10.1159/000262593

    Article  PubMed  Google Scholar 

  86. Golub JS et al (2012) Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 32:15093–15105. https://doi.org/10.1523/jneurosci.1709-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dupont J, Guilhaume A, Aran JM (1993) Neuronal degeneration of primary cochlear and vestibular innervations after local injection of sisomicin in the guinea pig. Hear Res 68:217–228. https://doi.org/10.1016/0378-5955(93)90125-k

    Article  CAS  PubMed  Google Scholar 

  88. McFadden SL, Ding D, Jiang H, Salvi RJ (2004) Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res 997:40–51

    Article  CAS  PubMed  Google Scholar 

  89. Juhn SK, Rybak LP (1981) Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 91:529–534. https://doi.org/10.3109/00016488109138538

    Article  CAS  PubMed  Google Scholar 

  90. Quraishi IH, Raphael RM (2008) Generation of the endocochlear potential: a biophysical model. Biophys J 94:L64–L66. https://doi.org/10.1529/biophysj.107.128082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patuzzi R (2011) Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hear Res 277:4–19. https://doi.org/10.1016/j.heares.2011.01.010

    Article  PubMed  Google Scholar 

  92. Shi X (2016) Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 338:52–63. https://doi.org/10.1016/j.heares.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka C, Nguyen-Huynh A, Loera K, Stark G, Reiss L (2014) Factors associated with hearing loss in a normal-hearing guinea pig model of hybrid cochlear implants. Hear Res 316:82–93. https://doi.org/10.1016/j.heares.2014.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  94. Reiss LA et al (2015) Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model. Hear Res 327:163–174. https://doi.org/10.1016/j.heares.2015.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li PM, Somdas MA, Eddington DK, Nadol JB Jr (2007) Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants. Ann Otol Rhinol Laryngol 116:731–738. https://doi.org/10.1177/000348940711601004

    Article  PubMed  Google Scholar 

  96. Seyyedi M, Nadol JB Jr (2014) Intracochlear inflammatory response to cochlear implant electrodes in humans. Otol Neurotol 35:1545–1551. https://doi.org/10.1097/mao.0000000000000540

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ishai R, Herrmann BS, Nadol JB Jr, Quesnel AM (2017) The pattern and degree of capsular fibrous sheaths surrounding cochlear electrode arrays. Hear Res 348:44–53. https://doi.org/10.1016/j.heares.2017.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rahman MT et al (2022) Cochlear implants: causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 422:108536. https://doi.org/10.1016/j.heares.2022.108536

    Article  PubMed  Google Scholar 

  99. Trakimas DR, Kozin ED, Ghanad I, Nadol JB Jr, Remenschneider AK (2018) Human otopathologic findings in cases of folded cochlear implant electrodes. Otol Neurotol 39:970–978. https://doi.org/10.1097/mao.0000000000001886

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shepherd RK, Clark GM, Black RC, Patrick JF (1983) The histopathological effects of chronic electrical stimulation of the cat cochlea. J Laryngol Otol 97:333–341. https://doi.org/10.1017/s0022215100094202

    Article  CAS  PubMed  Google Scholar 

  101. Swiderski DL, Colesa DJ, Hughes AP, Raphael Y, Pfingst BE (2020) Relationships between intrascalar tissue, neuron survival, and cochlear implant function. J Assoc Res Otolaryngol 21:337–352. https://doi.org/10.1007/s10162-020-00761-4

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ryu KA et al (2015) Intracochlear bleeding enhances cochlear fibrosis and ossification: an animal study. PLoS ONE 10:e0136617. https://doi.org/10.1371/journal.pone.0136617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Clark GM et al (1987) Biological safety, in The University of Melbourne-Nucleus multi-electrode cochlear implant. Adv Otorhinolaryngol. Karger: Basel 22–62

  104. O’Leary SJ et al (2013) Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res 298:27–35. https://doi.org/10.1016/j.heares.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  105. Yamahara K et al (2018) Hearing preservation at low frequencies by insulin-like growth factor 1 in a guinea pig model of cochlear implantation. Hear Res 368:92–108. https://doi.org/10.1016/j.heares.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  106. Green JD Jr, Marion MS, Hinojosa R (1991) Labyrinthitis ossificans: histopathologic consideration for cochlear implantation. Otolaryngol Head Neck Surg 104:320–326. https://doi.org/10.1177/019459989110400306

    Article  PubMed  Google Scholar 

  107. Hinojosa R, Green JD Jr, Marion MS (1991) Ganglion cell populations in labyrinthitis ossificans. Am J Otol 12(Suppl):3–7; discussion 18–21

  108. Nadol JB Jr, Hsu WC (1991) Histopathologic correlation of spiral ganglion cell count and new bone formation in the cochlea following meningogenic labyrinthitis and deafness. Ann Otol Rhinol Laryngol 100:712–716. https://doi.org/10.1177/000348949110000904

    Article  PubMed  Google Scholar 

  109. Hinojosa R, Redleaf MI, Green JD Jr, Blough RR (1995) Spiral ganglion cell survival in labyrinthitis ossificans: computerized image analysis. Ann Otol Rhinol Laryngol Suppl 166:51–54

    CAS  PubMed  Google Scholar 

  110. Finley CC et al (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928. https://doi.org/10.1097/MAO.0b013e318184f492

    Article  PubMed  PubMed Central  Google Scholar 

  111. Teymouri J, Hullar TE, Holden TA, Chole RA (2011) Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis. Otol Neurotol 32:980–986. https://doi.org/10.1097/MAO.0b013e3182255915

    Article  PubMed  PubMed Central  Google Scholar 

  112. Long CJ et al (2014) Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 15:293–304. https://doi.org/10.1007/s10162-013-0437-5

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schvartz-Leyzac KC et al (2020) Effects of electrode location on estimates of neural health in humans with cochlear implants. J Assoc Res Otolaryngol 18:324–334. https://doi.org/10.1007/s10162-020-00749-0

    Article  Google Scholar 

  114. Choudhury B et al (2011) Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss. Otol Neurotol 32:1370–1378. https://doi.org/10.1097/MAO.0b013e31822f09f2

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bas E et al (2015) Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci 9:303. https://doi.org/10.3389/fncel.2015.00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. O’Connell BP, Hunter JB, Wanna GB (2016) The importance of electrode location in cochlear implantation. Laryngoscope Investig Otolaryngol 1:169–174. https://doi.org/10.1002/lio2.42

    Article  PubMed  PubMed Central  Google Scholar 

  117. Koka K et al (2018) Intra-cochlear electrocochleography during cochear implant electrode insertion is predictive of final scalar location. Otol Neurotol 39:e654–e659. https://doi.org/10.1097/mao.0000000000001906

    Article  PubMed  PubMed Central  Google Scholar 

  118. Giardina CK et al (2019) Intracochlear electrocochleography: response patterns during cochlear implantation and hearing preservation. Ear Hear 40:833–848. https://doi.org/10.1097/aud.0000000000000659

    Article  PubMed  PubMed Central  Google Scholar 

  119. Haumann S et al (2019) Monitoring of the inner ear function during and after cochlear implant insertion using electrocochleography. Trends Hear 23:2331216519833567. https://doi.org/10.1177/2331216519833567

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wanna GB et al (2014) Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124(Suppl 6):S1–7. https://doi.org/10.1002/lary.24728

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gabrielpillai J, Burck I, Baumann U, Stöver T, Helbig S (2018) Incidence for tip foldover during cochlear implantation. Otol Neurotol 39:1115–1121. https://doi.org/10.1097/mao.0000000000001915

    Article  PubMed  Google Scholar 

  122. Shearer AE et al (2017) Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res 348:138–142. https://doi.org/10.1016/j.heares.2017.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  123. Eppsteiner RW et al (2012) Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis. Hear Res 292:51–58. https://doi.org/10.1016/j.heares.2012.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  124. Smith RJ, Bale JF Jr, White KR (2005) Sensorineural hearing loss in children. Lancet 365:879–890. https://doi.org/10.1016/s0140-6736(05)71047-3

    Article  PubMed  Google Scholar 

  125. Hochman JB et al (2010) Prevalence of connexin 26 (GJB2) and Pendred (SLC26A4) mutations in a population of adult cochlear implant candidates. Otol Neurotol 31:919–922. https://doi.org/10.1097/MAO.0b013e3181e3d324

    Article  PubMed  Google Scholar 

  126. Crispino G et al (2011) BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS ONE 6:e23279. https://doi.org/10.1371/journal.pone.0023279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takada Y et al (2014) Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 309:124–135. https://doi.org/10.1016/j.heares.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  128. Yu Q et al (2014) Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71–80. https://doi.org/10.1038/gt.2013.59

    Article  CAS  PubMed  Google Scholar 

  129. Iizuka T et al (2015) Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 24:3651–3661. https://doi.org/10.1093/hmg/ddv109

    Article  CAS  PubMed  Google Scholar 

  130. Guo J et al (2021) GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Mol Ther Methods Clin Dev 23:319–333. https://doi.org/10.1016/j.omtm.2021.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Choi BY et al (2011) Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest 121:4516–4525. https://doi.org/10.1172/jci59353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Griffith AJ, Wangemann P (2011) Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 281:11–17. https://doi.org/10.1016/j.heares.2011.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  133. Eshraghi AA et al (2020) Genotype-phenotype correlation for predicting cochlear implant outcome: current challenges and opportunities. Front Genet 11:678. https://doi.org/10.3389/fgene.2020.00678

    Article  PubMed  PubMed Central  Google Scholar 

  134. Norrix LW, Velenovsky DS (2014) Auditory neuropathy spectrum disorder: a review. J Speech Lang Hear Res 57:1564–1576. https://doi.org/10.1044/2014_jslhr-h-13-0213

    Article  PubMed  Google Scholar 

  135. Taioli F, Cabrini I, Cavallaro T, Acler M, Fabrizi GM (2011) Inherited demyelinating neuropathies with micromutations of peripheral myelin protein 22 gene. Brain 134:608–617. https://doi.org/10.1093/brain/awq374

    Article  PubMed  Google Scholar 

  136. Giuliani N, Holte L, Shy M, Grider T (2019) The audiologic profile of patients with Charcot-Marie Tooth neuropathy can be characterised by both cochlear and neural deficits. Int J Audiol 58:902–912. https://doi.org/10.1080/14992027.2019.1633022

    Article  PubMed  Google Scholar 

  137. Sahenk Z (1999) Abnormal Schwann cell-axon interactions in CMT neuropathies. The effects of mutant Schwann cells on the axonal cytoskeleton and regeneration-associated myelination. Ann N Y Acad Sci 883:415–426

    Article  CAS  PubMed  Google Scholar 

  138. Zhou Y et al (2019) A neutral lipid-enriched diet improves myelination and alleviates peripheral nerve pathology in neuropathic mice. Exp Neurol 321:113031. https://doi.org/10.1016/j.expneurol.2019.113031

    Article  CAS  PubMed  Google Scholar 

  139. Anzalone CL, Nuhanovic S, Olund AP, Carlson ML (2018) Cochlear implantation in Charcot-Marie-tooth disease: case report and review of the literature. Case Rep Med 2018:1760978. https://doi.org/10.1155/2018/1760978

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kobayashi M et al (2021) Cochlear implantation in patient with Charcot-Marie-tooth disease. Auris Nasus Larynx 48:327–330. https://doi.org/10.1016/j.anl.2020.03.003

    Article  PubMed  Google Scholar 

  141. Vesseur A et al (2018) Hearing restoration in cochlear nerve deficiency: the choice between cochlear implant or auditory brainstem implant, a meta-analysis. Otol Neurotol 39:428–437. https://doi.org/10.1097/mao.0000000000001727

    Article  PubMed  Google Scholar 

  142. Trakimas DR, Knoll RM, Castillo-Bustamante M, Kozin ED, Remenschneider AK (2020) Otopathologic analysis of patterns of postmeningitis labyrinthitis ossificans. Otolaryngol Head Neck Surg 194599820934748. https://doi.org/10.1177/019459982093474

    Article  Google Scholar 

  143. Wanna GB et al (2013) Implantation of the completely ossified cochlea: an image-guided approach. Otol Neurotol 34:522–525. https://doi.org/10.1097/MAO.0b013e31827d8aa0

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wilk M et al (2016) Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS ONE 11:e0147552. https://doi.org/10.1371/journal.pone.0147552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Durisin M et al (2015) Cochlear implantation in children with bacterial meningitic deafness: the influence of the degree of ossification and obliteration on impedance and charge of the implant. Cochlear Implants Int 16:147–158. https://doi.org/10.1179/1754762814y.0000000094

    Article  PubMed  Google Scholar 

  146. Nichani J et al (2011) Cochlear implantation after bacterial meningitis in children: outcomes in ossified and nonossified cochleas. Otol Neurotol 32:784–789. https://doi.org/10.1097/MAO.0b013e31821677aa

    Article  PubMed  Google Scholar 

  147. Singhal K, Singhal J, Muzaffar J, Monksfield P, Bance M (2020) Outcomes of cochlear implantation in patients with post-meningitis deafness: a systematic review and narrative synthesis. J Int Adv Otol 16:395–410. https://doi.org/10.5152/iao.2020.9040

    Article  PubMed  PubMed Central  Google Scholar 

  148. Linthicum FH Jr, Fayad J, Otto SR, Galey FR, House WF (1991) Cochlear implant histopathology. Am J Otol 12:245–311

    PubMed  Google Scholar 

  149. Khan AM, Whiten DM, Nadol JB Jr, Eddington DK (2005) Histopathology of human cochlear implants: correlation of psychophysical and anatomical measures. Hear Res 205:83–93. https://doi.org/10.1016/j.heares.2005.03.003

    Article  PubMed  Google Scholar 

  150. Linthicum FH Jr, Doherty JK, Lopez IA, Ishiyama A (2017) Cochlear implant histopathology. World J Otorhinolaryngol Head Neck Surg 3:211–213. https://doi.org/10.1016/j.wjorl.2017.12.008

    Article  PubMed  Google Scholar 

  151. Cheng YS, Svirsky MA (2021) Meta-analysis-correlation between spiral ganglion cell counts and speech perception with a cochlear implant. Audiol Res 11:220–226. https://doi.org/10.3390/audiolres11020020

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pfingst BE (1990) Changes over time in thresholds for electrical stimulation of the cochlea. Hear Res 50:225–236. https://doi.org/10.1016/0378-5955(90)90047-s

    Article  CAS  PubMed  Google Scholar 

  153. Pfingst BE, Donaldson JA, Miller JM, Spelman FA (1979) Psychophysical evaluation of cochlear prostheses in a monkey model. Ann Otol Rhinol Laryngol 88:613–625. https://doi.org/10.1177/000348947908800505

    Article  CAS  PubMed  Google Scholar 

  154. Pfingst BE et al (2015) Insertion trauma and recovery of function after cochlear implantation: evidence from objective functional measures. Hear Res 330:98–105. https://doi.org/10.1016/j.heares.2015.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  155. Colesa DJ et al (2021) Development of a chronically-implanted mouse model for studies of cochlear health and implant function. Hear Res 404:108216. https://doi.org/10.1016/j.heares.2021.108216

    Article  PubMed  PubMed Central  Google Scholar 

  156. Smith L, Simmons FB (1983) Estimating eighth nerve survival by electrical stimulation. Ann Otol Rhinol Laryngol 92:19–23. https://doi.org/10.1177/000348948309200105

    Article  CAS  PubMed  Google Scholar 

  157. Hall RD (1990) Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res 49:155–168

    Article  CAS  PubMed  Google Scholar 

  158. Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK (2006) Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res 215:47–55. https://doi.org/10.1016/j.heares.2006.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ramekers D, Versnel H, Strahl SB, Klis SF, Grolman W (2015) Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status. Hear Res 321:12–24. https://doi.org/10.1016/j.heares.2015.01.001

    Article  PubMed  Google Scholar 

  160. Zappia JJ, Altschuler RA (1989) Evaluation of the effect of ototopical neomycin on spiral ganglion cell density in the guinea pig. Hear Res 40:29–37. https://doi.org/10.1016/0378-5955(89)90096-8

    Article  CAS  PubMed  Google Scholar 

  161. Budenz CL, Pfingst BE, Raphael Y (2012) The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec (Hoboken) 295:1896–1908. https://doi.org/10.1002/ar.22586

    Article  CAS  PubMed  Google Scholar 

  162. Budenz CL et al (2015) Differential effects of AAV.BDNF and AAV.Ntf3 in the deafened adult guinea pig ear. Sci Rep 5:8619. https://doi.org/10.1038/srep08619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schvartz-Leyzac KC, Pfingst BE (2016) Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hear Res 341:50–65. https://doi.org/10.1016/j.heares.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  164. Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–144

    Article  CAS  PubMed  Google Scholar 

  165. McKay CM, Henshall KR (2003) The perceptual effects of interphase gap duration in cochlear implant stimulation. Hear Res 181:94–99

    Article  PubMed  Google Scholar 

  166. van den Honert C, Mortimer JT (1979) The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng 7:117–125

    Article  PubMed  Google Scholar 

  167. Thai-Van H et al (2001) Relationship between NRT measurements and behavioral levels in children with the Nucleus 24 cochlear implant may change over time: preliminary report. Int J Pediatr Otorhinolaryngol 58:153–162. https://doi.org/10.1016/s0165-5876(01)00426-8

    Article  CAS  PubMed  Google Scholar 

  168. Jeon EK et al (2010) Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant. J Am Acad Audiol 21:16–27. https://doi.org/10.3766/jaaa.21.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  169. He S, Teagle HFB, Buchman CA (2017) The electrically evoked compound action potential: from laboratory to clinic. Front Neurosci 11:339. https://doi.org/10.3389/fnins.2017.00339

    Article  PubMed  PubMed Central  Google Scholar 

  170. van Eijl RH, Buitenhuis PJ, Stegeman I, Klis SF, Grolman W (2017) Systematic review of compound action potentials as predictors for cochlear implant performance. Laryngoscope 127:476–487. https://doi.org/10.1002/lary.26154

    Article  PubMed  Google Scholar 

  171. Kim JR et al (2010) The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array. Otol Neurotol 31:1041–1048. https://doi.org/10.1097/MAO.0b013e3181ec1d92

    Article  PubMed  PubMed Central  Google Scholar 

  172. DeVries L, Scheperle R, Bierer JA (2016) Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds. J Assoc Res Otolaryngol 17:237–252. https://doi.org/10.1007/s10162-016-0557-9

    Article  PubMed  PubMed Central  Google Scholar 

  173. Scheperle R (2017) Suprathreshold compound action potential amplitude as a measure of auditory function in cochlear implant users. J Otol 12:18–28. https://doi.org/10.1016/j.joto.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  174. Franck KH, Norton SJ (2001) Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear 22:289–299

    Article  CAS  PubMed  Google Scholar 

  175. Heydebrand G, Hale S, Potts L, Gotter B, Skinner M (2007) Cognitive predictors of improvements in adults’ spoken word recognition six months after cochlear implant activation. Audiol Neurootol 12:254–264. https://doi.org/10.1159/000101473

    Article  PubMed  Google Scholar 

  176. Finke M, Buchner A, Ruigendijk E, Meyer M, Sandmann P (2016) On the relationship between auditory cognition and speech intelligibility in cochlear implant users: an ERP study. Neuropsychologia 87:169–181. https://doi.org/10.1016/j.neuropsychologia.2016.05.019

    Article  PubMed  Google Scholar 

  177. Garadat SN, Zwolan TA, Pfingst BE (2012) Across-site patterns of modulation detection: relation to speech recognitiona). J Acoust Soc Am 131:4030–4041. https://doi.org/10.1121/1.3701879

    Article  PubMed  PubMed Central  Google Scholar 

  178. He S et al (2018) Responsiveness of the Electrically stimulated cochlear nerve in children with cochlear nerve deficiency. Ear Hear 39:238–250. https://doi.org/10.1097/aud.0000000000000467

    Article  PubMed  PubMed Central  Google Scholar 

  179. Luo J et al (2020) The effects of GJB2 or SLC26A4 gene mutations on neural response of the electrically stimulated auditory nerve in children. Ear Hear 41:194–207. https://doi.org/10.1097/aud.0000000000000744

    Article  PubMed  Google Scholar 

  180. Fukushima K et al (2002) Better speech performance in cochlear implant patients with GJB2-related deafness. Int J Pediatr Otorhinolaryngol 62:151–157. https://doi.org/10.1016/s0165-5876(01)00619-x

    Article  PubMed  Google Scholar 

  181. Yan YJ, Li Y, Yang T, Huang Q, Wu H (2013) The effect of GJB2 and SLC26A4 gene mutations on rehabilitative outcomes in pediatric cochlear implant patients. Eur Arch Otorhinolaryngol 270:2865–2870. https://doi.org/10.1007/s00405-012-2330-y

    Article  PubMed  Google Scholar 

  182. Popov TM et al (2014) Auditory outcome after cochlear implantation in patients with congenital nonsyndromic hearing loss: influence of the GJB2 status. Otol Neurotol 35:1361–1365. https://doi.org/10.1097/mao.0000000000000348

    Article  PubMed  Google Scholar 

  183. Abdurehim Y, Lehmann A, Zeitouni AG (2017) Predictive value of GJB2 mutation status for hearing outcomes of pediatric cochlear implantation. Otolaryngol Head Neck Surg 157:16–24. https://doi.org/10.1177/0194599817697054

    Article  PubMed  Google Scholar 

  184. Jahn KN, Arenberg JG (2020) Electrophysiological estimates of the electrode-neuron interface differ between younger and older listeners with cochlear implants. Ear Hear 41:948–960. https://doi.org/10.1097/aud.0000000000000827

    Article  PubMed  Google Scholar 

  185. Imsiecke M, Büchner A, Lenarz T, Nogueira W (2021) Amplitude growth functions of auditory nerve responses to electric pulse stimulation with varied interphase gaps in cochlear implant users with ipsilateral residual hearing. Trends Hear 25:23312165211014136. https://doi.org/10.1177/23312165211014137

    Article  PubMed  PubMed Central  Google Scholar 

  186. Skinner MW et al (2007) In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl 197:2–24

    Article  PubMed  Google Scholar 

  187. Noble JH, Labadie RF, Gifford RH, Dawant BM (2013) Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society 21:820–829. https://doi.org/10.1109/TNSRE.2013.2253333

    Article  PubMed  Google Scholar 

  188. Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF (2014) Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol 19:400–411. https://doi.org/10.1159/000365273

    Article  PubMed  Google Scholar 

  189. Noble JH et al (2016) Initial results with image-guided cochlear implant programming in children. Otol Neurotol 37:e63–e69. https://doi.org/10.1097/mao.0000000000000909

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cosentino S, Gaudrain E, Deeks JM, Carlyon RP (2016) Multistage nonlinear optimization to recover neural activation patterns from evoked compound action potentials of cochlear implant users. IEEE Trans Biomed Eng 63:833–840. https://doi.org/10.1109/tbme.2015.2476373

    Article  PubMed  Google Scholar 

  191. Garcia C et al (2021) The panoramic ECAP method: estimating patient-specific patterns of current spread and neural health in cochlear implant users. J Assoc Res Otolaryngol 22:567–589. https://doi.org/10.1007/s10162-021-00795-2

    Article  PubMed  PubMed Central  Google Scholar 

  192. Dolan DF, Nuttall AL, Avinash G (1990) Asynchronous neural activity recorded from the round window. J Acoust Soc Am 87:2621–2627. https://doi.org/10.1121/1.399054

    Article  CAS  PubMed  Google Scholar 

  193. Searchfield GD, Muñoz DJ, Thorne PR (2004) Ensemble spontaneous activity in the guinea-pig cochlear nerve. Hear Res 192:23–35. https://doi.org/10.1016/j.heares.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  194. Patuzzi RB, Yates GK, Johnstone BM (1989) Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Hear Res 39:189–202. https://doi.org/10.1016/0378-5955(89)90090-7

    Article  CAS  PubMed  Google Scholar 

  195. Dong W, Olson ES (2013) Detection of cochlear amplification and its activation. Biophys J 105:1067–1078. https://doi.org/10.1016/j.bpj.2013.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bester C et al (2020) Cochlear microphonic latency predicts outer hair cell function in animal models and clinical populations. Hear Res 398:108094. https://doi.org/10.1016/j.heares.2020.108094

    Article  PubMed  Google Scholar 

  197. Adel Y, Tillein J, Petzold H, Weissgerber T, Baumann U (2020) Band-limited chirp-evoked compound action potential in guinea pig: comprehensive neural measure for cochlear implantation monitoring. Ear Hear 42:142–162. https://doi.org/10.1097/aud.0000000000000910

    Article  Google Scholar 

  198. Formeister EJ et al (2015) Intraoperative round window electrocochleography and speech perception outcomes in pediatric cochlear implant recipients. Ear Hear 36:249–260. https://doi.org/10.1097/aud.0000000000000106

    Article  PubMed  Google Scholar 

  199. Fitzpatrick DC et al (2014) Round window electrocochleography just before cochlear implantation: relationship to word recognition outcomes in adults. Otol Neurotol 35:64–71. https://doi.org/10.1097/mao.0000000000000219

    Article  PubMed  PubMed Central  Google Scholar 

  200. McClellan JH et al (2014) Round window electrocochleography and speech perception outcomes in adult cochlear implant subjects: comparison with audiometric and biographical information. Otol Neurotol 35:e245–e252. https://doi.org/10.1097/mao.0000000000000557

    Article  PubMed  Google Scholar 

  201. Harris MS et al (2017) Patterns seen during electrode insertion using intracochlear electrocochleography obtained directly through a cochlear implant. Otol Neurotol 38:1415–1420. https://doi.org/10.1097/mao.0000000000001559

    Article  PubMed  PubMed Central  Google Scholar 

  202. Koka K, Saoji AA, Litvak LM (2017) Electrocochleography in cochlear implant recipients with residual hearing: comparison with audiometric thresholds. Ear Hear 38:e161–e167. https://doi.org/10.1097/aud.0000000000000385

    Article  PubMed  Google Scholar 

  203. Coulthurst S, Nachman AJ, Murray MT, Koka K, Saoji AA (2020) Comparison of pure-tone thresholds and cochlear microphonics thresholds in pediatric cochlear implant patients. Ear Hear 41:1320–1326. https://doi.org/10.1097/aud.0000000000000870

    Article  PubMed  Google Scholar 

  204. Middlebrooks JC (2004) Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. J Acoust Soc Am 116:452–468. https://doi.org/10.1121/1.1760795

    Article  PubMed  Google Scholar 

  205. Pfingst BE et al (2011) Cochlear infrastructure for electrical hearing. Hear Res 281:65–73. https://doi.org/10.1016/j.heares.2011.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhou N, Kraft CT, Colesa DJ, Pfingst BE (2015) Integration of pulse trains in humans and guinea pigs with cochlear implants. J Assoc Res Otolaryngol 16:523–534. https://doi.org/10.1007/s10162-015-0521-0

    Article  PubMed  PubMed Central  Google Scholar 

  207. Bierer JA (2010) Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends Amplif 14:84–95. https://doi.org/10.1177/1084713810375249

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bierer JA, Faulkner KF (2010) Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves. Ear Hear 31:247–258. https://doi.org/10.1097/AUD.0b013e3181c7daf4

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bierer JA, Litvak L (2016) Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear. https://doi.org/10.1177/2331216516653389

    Article  PubMed  PubMed Central  Google Scholar 

  210. DiNino M, O’Brien G, Bierer SM, Jahn KN, Arenberg JG (2019) The estimated electrode-neuron interface in cochlear implant listeners is different for early-implanted children and late-implanted adults. J Assoc Res Otolaryngol 20:291–303. https://doi.org/10.1007/s10162-019-00716-4

    Article  PubMed  PubMed Central  Google Scholar 

  211. Garadat SN, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE (2022) Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration. Hear Res 414:108404. https://doi.org/10.1016/j.heares.2021.108404

    Article  PubMed  Google Scholar 

  212. Jahn KN, Arenberg JG (2019) Evaluating psychophysical polarity sensitivity as an indirect estimate of neural status in cochlear implant listeners. J Assoc Res Otolaryngol 20:415–430. https://doi.org/10.1007/s10162-019-00718-2

    Article  PubMed  PubMed Central  Google Scholar 

  213. Jahn KN, Bergan MD, Arenberg JG (2020) Auditory detection thresholds and cochlear resistivity differ between pediatric cochlear implant listeners with enlarged vestibular aqueduct and those with connexin-26 mutations. Am J Audiol 29:23–34. https://doi.org/10.1044/2019_aja-19-00054

    Article  PubMed  PubMed Central  Google Scholar 

  214. Zhou N (2017) Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users. J Acoust Soc Am 141:El243. https://doi.org/10.1121/1.4977235

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhou N (2019) Longitudinal effect of deactivating stimulation sites based on low-rate thresholds on speech recognition in cochlear implant users. Int J Audiol 58:587–597. https://doi.org/10.1080/14992027.2019.1601779

    Article  PubMed  PubMed Central  Google Scholar 

  216. Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ (1999) Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear Res 130:197–218

    Article  CAS  PubMed  Google Scholar 

  217. Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000) The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings. Hear Res 149:115–128

    Article  CAS  PubMed  Google Scholar 

  218. Hartmann R, Topp G, Klinke R (1984) Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hear Res 13:47–62. https://doi.org/10.1016/0378-5955(84)90094-7

    Article  CAS  PubMed  Google Scholar 

  219. Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J (2008) Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol 9:241–251. https://doi.org/10.1007/s10162-008-0112-4

    Article  PubMed  PubMed Central  Google Scholar 

  220. Undurraga JA, van Wieringen A, Carlyon RP, Macherey O, Wouters J (2010) Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites. Hear Res 269:146–161. https://doi.org/10.1016/j.heares.2010.06.017

    Article  PubMed  Google Scholar 

  221. Undurraga JA, Carlyon RP, Wouters J, van Wieringen A (2013) The polarity sensitivity of the electrically stimulated human auditory nerve measured at the level of the brainstem. J Assoc Res Otolaryngol 14:359–377. https://doi.org/10.1007/s10162-013-0377-0

    Article  PubMed  PubMed Central  Google Scholar 

  222. Hughes ML, Choi S, Glickman E (2018) What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients? Hear Res 359:50–63. https://doi.org/10.1016/j.heares.2017.12.015

    Article  PubMed  Google Scholar 

  223. Hughes ML, Goehring JL, Baudhuin JL (2017) Effects of stimulus polarity and artifact reduction method on the electrically evoked compound action potential. Ear Hear 38:332–343. https://doi.org/10.1097/aud.0000000000000392

    Article  PubMed  PubMed Central  Google Scholar 

  224. Macherey O, Carlyon RP, Chatron J, Roman S (2017) Effect of pulse polarity on thresholds and on non-monotonic loudness growth in cochlear implant users. J Assoc Res Otolaryngol 18:513–527. https://doi.org/10.1007/s10162-016-0614-4

    Article  PubMed  PubMed Central  Google Scholar 

  225. Carlyon RP, Cosentino S, Deeks JM, Parkinson W, Arenberg JA (2018) Effect of stimulus polarity on detection thresholds in cochlear implant users: relationships with average threshold, gap detection, and rate discrimination. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-018-0677-5

    Article  PubMed  PubMed Central  Google Scholar 

  226. Goehring T, Archer-Boyd A, Deeks JM, Arenberg JG, Carlyon RP (2019) A site-selection strategy based on polarity sensitivity for cochlear implants: effects on spectro-temporal resolution and speech perception. J Assoc Res Otolaryngol 20:431–448. https://doi.org/10.1007/s10162-019-00724-4

    Article  PubMed  PubMed Central  Google Scholar 

  227. Brochier T et al (2021) Evaluating and comparing behavioural and electrophysiological estimates of neural health in cochlear implant users. J Assoc Res Otolaryngol 22:67–80. https://doi.org/10.1007/s10162-020-00773-0

    Article  PubMed  Google Scholar 

  228. Brochier T, McKay CM, Carlyon RP (2021) Interpreting the effect of stimulus parameters on the electrically evoked compound action potential and on neural health estimates. J Assoc Res Otolaryngol 22:81–94. https://doi.org/10.1007/s10162-020-00774-z

    Article  PubMed  Google Scholar 

  229. Fayad JN, Makarem AO, Linthicum FH Jr (2009) Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction. Otolaryngol Head Neck Surg 141:247–252. https://doi.org/10.1016/j.otohns.2009.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  230. Souter M et al (2012) Systemic immunity influences hearing preservation in cochlear implantation. Otol Neurotol 33:532–538. https://doi.org/10.1097/MAO.0b013e31824bac44

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kamakura T, Nadol JB Jr (2016) Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear Res 339:132–141. https://doi.org/10.1016/j.heares.2016.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  232. Schvartz-Leyzac KC, Zwolan TA, Pfingst BE (2021) Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hear Res 406:108257. https://doi.org/10.1016/j.heares.2021.108257

    Article  PubMed  PubMed Central  Google Scholar 

  233. Li Q, Lu T, Zhang C, Hansen MR, Li S (2020) Electrical stimulation induces synaptic changes in the peripheral auditory system. J Comp Neurol 528:893–905. https://doi.org/10.1002/cne.24802

    Article  PubMed  Google Scholar 

  234. Zhou N, Pfingst BE (2014) Effects of site-specific level adjustments on speech recognition with cochlear implants. Ear Hear 35:30–40. https://doi.org/10.1097/AUD.0b013e31829d15cc

    Article  CAS  PubMed  Google Scholar 

  235. Rah YC et al (2016) Extended use of systemic steroid is beneficial in preserving hearing in guinea pigs after cochlear implant. Acta Otolaryngol 136:1213–1219. https://doi.org/10.1080/00016489.2016.1206965

    Article  CAS  PubMed  Google Scholar 

  236. Shaul C et al (2019) Glucocorticoid for hearing preservation after cochlear implantation: a systemic review and meta-analysis of animal studies. Otol Neurotol 40:1178–1185. https://doi.org/10.1097/mao.0000000000002383

    Article  PubMed  Google Scholar 

  237. Ma Y, Wise AK, Shepherd RK, Richardson RT (2019) New molecular therapies for the treatment of hearing loss. Pharmacol Ther 200:190–209. https://doi.org/10.1016/j.pharmthera.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Askew C, Chien WW (2020) Adeno-associated virus gene replacement for recessive inner ear dysfunction: progress and challenges. Hear Res 394:107947. https://doi.org/10.1016/j.heares.2020.107947

    Article  PubMed  PubMed Central  Google Scholar 

  239. Delmaghani S, El-Amraoui A (2020) Inner ear gene therapies take off: current promises and future challenges. J Clin Med. https://doi.org/10.3390/jcm9072309

    Article  PubMed  PubMed Central  Google Scholar 

  240. Zhang L, Wu X, Lin X (2020) Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 394:107858. https://doi.org/10.1016/j.heares.2019.107858

    Article  PubMed  Google Scholar 

  241. Leake PA, Akil O, Lang H (2020) Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 394:107955. https://doi.org/10.1016/j.heares.2020.107955

    Article  PubMed  PubMed Central  Google Scholar 

  242. Manrique-Huarte R et al (2020) Cochlear implantation with a dexamethasone eluting electrode array: functional and anatomical changes in non-human primates. Otol Neurotol 41:e812–e822. https://doi.org/10.1097/mao.0000000000002686

    Article  PubMed  Google Scholar 

  243. Simoni E et al (2020) Immune response after cochlear implantation. Front Neurol 11:341. https://doi.org/10.3389/fneur.2020.00341

    Article  PubMed  PubMed Central  Google Scholar 

  244. O’Leary SJ et al (2021) Systemic methylprednisolone for hearing preservation during cochlear implant surgery: a double blinded placebo-controlled trial. Hear Res 404:108224. https://doi.org/10.1016/j.heares.2021.108224

    Article  PubMed  Google Scholar 

  245. Kikkawa YS et al (2014) Growth factor-eluting cochlear implant electrode: impact on residual auditory function, insertional trauma, and fibrosis. J Transl Med 12:280. https://doi.org/10.1186/s12967-014-0280-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Dhanasingh A, Hochmair I (2021) Drug delivery in cochlear implantation. Acta Otolaryngol 141:135–156. https://doi.org/10.1080/00016489.2021.1888505

    Article  CAS  PubMed  Google Scholar 

  247. Chen W et al (2012) Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 490:278–282. https://doi.org/10.1038/nature11415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Rivolta MN (2013) New strategies for the restoration of hearing loss: challenges and opportunities. Br Med Bull 105:69–84. https://doi.org/10.1093/bmb/lds035

    Article  CAS  PubMed  Google Scholar 

  249. Lee S et al (2020) Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 10:21397. https://doi.org/10.1038/s41598-020-78167-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shibata SB et al (2020) Gene therapy for hair cell regeneration: review and new data. Hear Res 394:107981. https://doi.org/10.1016/j.heares.2020.107981

    Article  PubMed  Google Scholar 

  251. White PM (2020) Perspectives on human hearing loss, cochlear regeneration, and the potential for hearing restoration therapies. Brain Sci. https://doi.org/10.3390/brainsci10100756

    Article  PubMed  PubMed Central  Google Scholar 

  252. Iyer AA, Groves AK (2021) Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells. Front Cell Neurosci 15:660748. https://doi.org/10.3389/fncel.2021.660748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our valued colleagues and collaborators Lisa Beyer, Christopher Buswinka, Jenna Devare, and Teresa Zwolan for their invaluable contributions to this work. We are grateful to our research participants who have generously provided their time and interest in our studies.

Funding

Much of the work reviewed in this paper was funded by the National Institute on Deafness and Other Communication Disorders, with additional support from Cochlear LTD and MED-EL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan E. Pfingst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schvartz-Leyzac, K.C., Colesa, D.J., Swiderski, D.L. et al. Cochlear Health and Cochlear-implant Function. JARO 24, 5–29 (2023). https://doi.org/10.1007/s10162-022-00882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00882-y

Keywords

Navigation