Skip to main content

Advertisement

Log in

Compression anastomoses in colorectal surgery: a review

  • Review
  • Published:
Techniques in Coloproctology Aims and scope Submit manuscript

Abstract

The main serious risks of anastomotic construction in the colon and rectum include dehiscence and stricture formation. There is a resurgence of interest in sutureless anastomoses formed by compression elements since the introduction of shape memory alloy (SMA) systems, which evoke minimal early inflammatory response whilst maintaining anastomotic integrity. Currently, the most commonly used SMA is the nickel–titanium (NiTi) alloy that is highly biocompatible, returning to its pre-deformed stable (austenite) shape under different mechanical and thermal loads for use in humans. Pre-clinical data for shape memory alloy systems in colorectal anastomoses are limited, but it appears to be safe in porcine and canine models with limited leakage and reduced stricture formation. There does not appear to be any difference in tissue biochemistry of inflammatory markers when compared with conventional stapled techniques, although the few studies available show a markedly reduced early inflammatory response at the anastomotic site with the NiTi device. The majority of the clinical data concerning compression anastomoses are derived from the biofragmentable anastomotic ring device. This device has fallen out of use because of reported leaks, instrumental failure and problems with device expulsion. A novel SMA device, the NiTi anastomotic ring, permits construction of a low rectal anastomosis construction during open or laparoscopic procedures. The preliminary data demonstrate a safety comparable to conventional staple technology. This device also provides the potential of benefit of reduced anastomotic inflammation, because the compression ring results in direct serosa-to-serosa (or alternatively serosa-to-muscularis propria) apposition without the persistence of residual foreign material. This type of construction could lead to a reduced incidence of early anastomotic leakage and/or the development of anastomotic stenosis. Randomized clinical trials employing a NiTi arm for elective, emergency and high-risk colorectal anastomoses are required to determine its indications and clinical profile as well as to assess whether such technology may selectively obviate the need for proximal diversion in low colorectal anastomoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Graffner H, Andersson L, Lowenhielm P, Walther B (1984) The healing process of anastomoses of the colon. A comparative study using single, double-layer or stapled anastomosis. Dis Colon Rectum 27:767–771

    Article  PubMed  CAS  Google Scholar 

  2. Matthiessen P, Halböök O, Andersson M, Rutegård J, Sjödahl R (2004) Risk factors for anastomotic leakage after anterior resection of the rectum. Colorectal Dis 6:462–469

    Article  PubMed  CAS  Google Scholar 

  3. Bannura GC, Cumsille MA, Barrera AE, Contreras JP, Melo CL, Soto DC (2004) Predictive factors of stenosis after stapled colorectal anastomosis: prospective analysis of 179 consecutive patients. World J Surg 28:921–925

    Article  PubMed  Google Scholar 

  4. Aggarwal R, Darzi A (2005) Compression anastomoses revisited. J Am Coll Surg 201:965–971

    Article  PubMed  Google Scholar 

  5. Thompson SK, Chang EY, Jobe BA (2006) Healing in gastrointestinal anastomosis, part I. Microsurgery 26:131–136

    Article  PubMed  Google Scholar 

  6. Martens MF, Hendricks T (1991) Postoperative changes in collagen synthesis in intestinal anastomoses of the rat: differences between small and large bowel. Gut 32:1482–1487

    Article  PubMed  CAS  Google Scholar 

  7. Syk I, Agren MS, Adawi D, Jeppsson B (2001) Inhibition of matrix metalloproteinases enhances breaking strength of colonic anastomoses in an experimental model. Br J Surg 88:228–234

    Article  PubMed  CAS  Google Scholar 

  8. De Hingh IH, de Man BM, Lomme RM, van Goor H, Hendriks T (2003) Colonic anastomotic strength and matrix metalloproteinase activity in an experimental model of bacterial peritonitis. Br J Surg 90:981–988

    Article  PubMed  Google Scholar 

  9. Hardy KJ (1990) Non-suture anastomosis: the historical development. Aust N Z J Surg 60:625–633

    Article  PubMed  CAS  Google Scholar 

  10. Amat C (1895) Appareils a sutures: Les viroles de denans; les points de Bonnier; Les boutons de Murphy. Arch Med Pharmacie Militaires Paris 25:273–285

    Google Scholar 

  11. Murphy JB (1892) Cholecysto-intestinal, gastro-intestinal, entero-intestinal anastomosis and approximation without sutures. Med Rec N Y 42:665–676

    Google Scholar 

  12. McCue JL, Phillips RK (1991) Sutureless intestinal anastomoses. Br J Surg 78:1291–1296

    Article  PubMed  CAS  Google Scholar 

  13. Lembert A (1826) Mémoire sur l’entéroraphie avec la description d’un procédé nouveau pour pratiquer cette opération chirurgicale. Répertoire général d’anatomie et de physiologie pathologiques, Paris 2:10–107

    Google Scholar 

  14. Senn N (1893) Enterorrhaphy: its history, technique and present status. JAMA 21:215–235

    Google Scholar 

  15. Hardy TG, Pace WG, Maney JW, Katz AR, Kaganov AL (1985) A biofragmentable ring for sutureless bowel anastomosis: an experimental study. Dis Colon Rectum 28:484–490

    Article  PubMed  Google Scholar 

  16. Hardy TG, Aguilar PS, Stewart WRC et al (1987) Initial clinical experience with a biofragmentable ring for sutureless bowel anastomosis. Dis Colon Rectum 30:55–61

    Article  PubMed  Google Scholar 

  17. Chen T-C, Ding K-C, Yang M-J, Chang C-P (1994) New device for biofragmentable anastomotic ring in low anterior resection. Dis Colon Rectum 37:834–836

    Article  PubMed  CAS  Google Scholar 

  18. Bubrick MP, Corman ML, Cahill CJ, Hardy TG Jr, Nance FC, Shatney CH (1991) Prospective, randomized trial of biofragmentable anastomosis ring. The BAR Investigational Group. Am J Surg 161:136–142

    Article  PubMed  CAS  Google Scholar 

  19. Forde KA, McLarty AJ, Tsai J, Ghalili K, Delany HM (1993) Murphy’s button revisited. Clinical experience with the biofragmentable anastomotic ring. Ann Surg 217:78–81

    Article  PubMed  CAS  Google Scholar 

  20. Kanshin NN, Lytkin MI, Knysh VI, Klur VI, Khamidov AI (1984) First experience with application of compression anastomoses with the apparatus AKA-2 in operations on the large intestine. Vestn Khir Im I I Grek 132:52–57

    PubMed  CAS  Google Scholar 

  21. Khanevich MD, Karapetian AR (2001) Restorative operations in colostomy patients with short stump of the rectum. Vestn Khir Im I I Grek 160:46–48

    PubMed  CAS  Google Scholar 

  22. Pirogov AI, Kanshin NN, Morkhov IuK, Dzhabbarov MM, Tuleuov AE (1987) Experimental development of compression esophagogastric anastomoses using the AKA-2 apparatus and the SPTU modified apparatus. Grudn Khir 5:62–65

    PubMed  Google Scholar 

  23. Patiutko II, Pedchenko VV, Lagoshnyĭ AT, Efimov ON (1991) Experience in the use of the AKA-2 device in the formation of esophago-intestinal anastomosis. Klin Khir 5:31–35

    PubMed  Google Scholar 

  24. Wullstein C, Gross E (2000) Compression anastomosis (AKA-2) in colorectal surgery: results in 442 consecutive patients. Br J Surg 87:1071–1075

    Article  PubMed  CAS  Google Scholar 

  25. Rosati R, Rebuffat C, Pezzuoli G (1988) A new mechanical device for circular compression anastomosis. Preliminary results of animal and clinical experimentation. Ann Surg 207:245–252

    Article  PubMed  CAS  Google Scholar 

  26. Malthaner RA, Hakki FZ, Saini N, Andrews BL, Harmon JW (1990) Anastomotic compression button: a new mechanical device for sutureless bowel anastomosis. Dis Colon Rectum 33:291–297

    Article  PubMed  CAS  Google Scholar 

  27. Cope C (1995) Evaluation of compression cholecystogastric and cholecystojejunal anastomoses in swine after peroral and surgical introduction of magnets. J Vasc Interv Radiol 6:546–552

    Article  PubMed  CAS  Google Scholar 

  28. Vicol C, Eifert S, Oberhoffer M, Boekstegers P, Reichart B (2006) Mid-term patency after magnetic coupling for distal bypass anastomosis in coronary surgery. Ann Thorac Surg 82:1452–1456

    Article  PubMed  Google Scholar 

  29. Jamshidi R, Stephenson JT, Clay JG, Pichakron KO, Harrison MR (2009) Magnamosis: magnetic compression anastomosis with comparison to suture and staple techniques. J Pediatr Surg 44:222–228

    Article  PubMed  Google Scholar 

  30. Pichakron KO, Jelin EB, Hirose S et al (2011) Magnamosis II: magnetic compression anastomosis for minimally invasive gastrojejunostomy and jejunojejunostomy. J Am Coll Surg 212:42–49

    Article  PubMed  Google Scholar 

  31. Tarniţă D, Tarniţă DN, Bîzdoacă N, Mîndrilă I, Vasilescu M (2009) Properties and medical applications of shape memory alloys. Rom J Morphol Embryol 50:15–21

    PubMed  Google Scholar 

  32. Zablotskii V, Pérez-Landazábal JI, Recarte V, Gómez-Polo C (2010) Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys. J Phys: Condens Matter 22:316004

    Article  CAS  Google Scholar 

  33. Nudelman I, Fuko V, Waserberg N et al (2005) Colonic anastomosis performed with a memory-shaped device. Am J Surg 190:434–438

    Article  PubMed  Google Scholar 

  34. Mantovani D (2000) Shape memory alloys: properties and biomedical applications. J Miner Met Mater Soc 52:36–44

    CAS  Google Scholar 

  35. Wu S, Wayman C (1987) Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys. Metallography 20:359

    Article  CAS  Google Scholar 

  36. Braun JT, Akyuz E, Ogilvie JW, Bachus KN (2005) The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis. J Bone Joint Surg Am 87:2038–2051

    Article  PubMed  Google Scholar 

  37. Barras CD, Myers KA (2000) Nitinol—its use in vascular surgery and other applications. Eur J Vasc Endovasc Surg 19:564–569

    Article  PubMed  CAS  Google Scholar 

  38. Migliavacca F, Petrini L, Massarotti P, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2:205–217

    Article  PubMed  Google Scholar 

  39. Hoh DJ, Hoh BL, Amar AP, Wang MY (2009) Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications. Neurosurgery 64:199–215

    Article  PubMed  Google Scholar 

  40. Ryhänen J (1999) Biocompatibility evolution of nickel-titanium shape memory alloy. Academic Dissertation, Faculty of Medicine, University of Oulu, Finland

  41. Duerig TW, Pelton AR, Stöckel D (1996) The utility of superelasticity in medicine. Biomed Mater Eng 6:255–266

    PubMed  CAS  Google Scholar 

  42. Monassevitch LA, BenDov-Laks N, Tyagunov N et al. (2006) Design principles of shape memory devices for compression anastomosis in the digestive system. In: Proceedings of international conference on shape memory and superelastic technologies, Pacific Grove, pp 703–713

  43. Weizman A, Monassevitch L, Greenberg K, Millis S, Harari B, Dar I (2011) FE analysis of Nitinol leaf springs used in a compression anastomosis device. J Mater Eng Perform [Epub Ahead of Print]

  44. Maney JW, Katz AR, Li LK, Pace WG, Hardy TG (1988) Biofragmentable bowel anastomosis ring: comparative efficacy studies in dogs. Surgery 103:56–62

    PubMed  CAS  Google Scholar 

  45. Bundy CA, Zera RT, Onstad GA, Bilodeau LL, Bubrick MP (1992) Comparative surgical and colonoscopic appearance of colon anastomoses constructed with sutures, staples, and the biofragmentable anastomotic ring. Surg Endosc 6:18–22

    Article  PubMed  CAS  Google Scholar 

  46. Croston JK, Jacobs DM, Kelly PH et al (1990) Experience with the biofragmentable anastomotic ring (BAR) in bowel preoperatively irradiated with 6000 rad. Dis Colon Rectum 33:222–226

    Article  PubMed  CAS  Google Scholar 

  47. Smith AD, Bubrick MP, Mestitz ST et al (1988) Evaluation of the biofragmentable anastomotic ring following preoperative irradiation to the rectosigmoid in dogs. Dis Colon Rectum 31:5–9

    Article  PubMed  CAS  Google Scholar 

  48. Ryan S, Seim H, MacPhail C, Bright R, Monnet E (2006) Comparison of biofragmentable anastomosis ring and sutured anastomoses for subtotal colectomy in cats with idiopathic megacolon. Vet Surg 35:740–748

    Article  PubMed  Google Scholar 

  49. Gross E, Schaarschmidt K, Donhuijsen K, Beyer M, Eigler FW (1986) Die nahtlose anastomose—histologische, biomechanische und mikroangiographische untersuchungen am colon der ratte. Langenbecks Arch Chir Suppl Chir Forum 277–281

  50. Hendrix H, Gross E, Schaarschmidt K, Donhuijsen K, Haralambie Eigler FW (1988) Die nahtlose anastomose unter bedingungen der experimentellen peritonitis am rattencolon. Langenbecks Arch Chir Suppl Chir Forum 453–457

  51. Mimuro A, Tsuchida A, Yamanouchi E et al (2003) A novel technique of magnetic compression anastomosis for severe biliary stenosis. Gastrointest Endosc 58:283–287

    Article  PubMed  Google Scholar 

  52. Cope C, Clark TW, Ginsberg G, Habecker P (1999) Stent placement of gastroenteric anastomoses formed by magnetic compression. J Vasc Interv Radiol 10:1379–1386

    Article  PubMed  CAS  Google Scholar 

  53. Erdmann D, Sweis R, Heitmann C et al (2004) Side-to-side sutureless vascular anastomosis with magnets. J Vasc Surg 40:505–511

    Article  PubMed  Google Scholar 

  54. Muraoka N, Uematsu H, Yamanouchi E et al (2005) Yamanouchi magnetic compression anastomosis for bilioenteric anastomotic stricture after living-donor liver transplantation. J Vasc Interv Radiol 16:1263–1267

    Article  PubMed  Google Scholar 

  55. Jansen A, Keeman JN, Davies GA, Klopper PJ (1980) Early experiences with magnetic rings in resection of the distal colon. Neth J Surg 32:20–27

    PubMed  CAS  Google Scholar 

  56. Jansen A, Brummelkamp WH, Davies GA, Klopper PJ, Kemman JM (1981) Clinical applications of magnetic rings in colorectal anastomosis. Surg Gynecol Obstet 153:537–545

    PubMed  CAS  Google Scholar 

  57. Nudelman I, Guko VV, Morgenstern S, Giler S, Lelcuk S (2000) Gastrointestinal anastomosis with the Nickel-Titanium double ring. World J Surg 24:874–877

    Article  PubMed  CAS  Google Scholar 

  58. Kopelman D, Lelcuk S, Sayfan J et al (2007) End-to-end compression anastomosis of the rectum: a pig model. World J Surg 31:532–537

    Article  PubMed  Google Scholar 

  59. Kopelman Y, Siersema PD, Nir Y et al (2009) Endoluminal compression clip: full-thickness resection of the mesenteric bowel wall in a porcine model. Gastrointest Endosc 70:1146–1157

    Article  PubMed  Google Scholar 

  60. Stewart D, Hunt S, Pierce R et al (2007) Validation of the NiTi Endoluminal Compression Anastomotic Ring (ColonRing) device and comparison to the traditional circular stapled colorectal anastomosis in a porcine model. Surg Innov 14:252–260

    PubMed  Google Scholar 

  61. Chun JS, Stewart DB, Lee D et al (2008) Evaluation of the safe and effective performance of the compression anastomosis ring (ColonRing) for colorectal anastomosis in comparison to circular stapler in a porcine model. ASCRS Meeting Chicago, Poster

    Google Scholar 

  62. Zühlke HV, Lorenz EM, Straub EM, Savvas V (1990) Pathophysiology and classification of adhesions. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir 1009–1016

  63. Chun J, Parikh P, Lee D, Fleshman J (2011) Safety of the NiTi EndoCAR following cheomradiation in a porcine model. Surg Innov Mar 7. [EPub ahead of print]

  64. Chen T-C, Yang M-J, Chang C-P (1995) New anastomotic gun for biofragmentable anastomotic ring in low anterior resection. Dis Colon Rectum 38:1214–1216

    Article  PubMed  CAS  Google Scholar 

  65. Lünstedt B, Sundermann H (1995) Transanal compression anastomosis in the lower rectum with a biofragmentable anastomosis ring (Valtrac): surgical technique and initial clinical experiences [Transanale Kompressionsanastomose im tiefen Rectum mit einem biofragmentierbaren Anastomosenring (Valtrac®): Operationstechnik und erste klinische Erfahrungen]. Chirurg 66:715–718

  66. Coleman J (1995) Future developments of Valtrac® with particular reference to transanal and enteral delivery of BAR. In: Engemann R, Thiede A (eds) Compression anastomosis by biofragmentable rings. Proceedings of the second European workshop. Springer, Berlin, pp 44–57

  67. Thiede A, Geiger D, Dietz UA et al (1998) Overview on compression anastomoses: biofragmentable anastomosis ring multicenter prospective trial of 1666 anastomoses. World J Surg 22:78–87

    Article  PubMed  CAS  Google Scholar 

  68. Kim SH, Choi HJ, Park KJ et al (2005) Sutureless intestinal anastomosis with the biofragmentable anastomosis ring: experience of 632 anastomoses in a single institute. Dis Colon Rectum 48:2127–2132

    Article  PubMed  Google Scholar 

  69. Corman ML, Prager ED, Hardy TG, the Valtrac Bar Study Groups (1989) Comparison of the Valtrac biofragmentable anastomosis ring with conventional suture and stapled anastomosis in colon surgery. Results of a prospective, randomized clinical trial. Dis Colon Rectum 32:183–187

    Article  PubMed  CAS  Google Scholar 

  70. Glavić Z, Kovacić D, Skegro M, Rahelić V, Begić L (2000) Anastomosis of the colon using the Valtrac biofragmentable ring. Lijec Vjesn 122:136–139

    PubMed  Google Scholar 

  71. Chua CL (1993) Colonic anastomosis with sutureless biofragmentable rings. Singap Med J 34:541–544

    CAS  Google Scholar 

  72. Walfish S, Twena M, Avinoah E, Charuzi I (1993) Experience with biofragmentable anastomotic rings. Harefuah 125:263–264

    PubMed  CAS  Google Scholar 

  73. Debus ES, Sailer M, Geiger D, Dietz UA, Fuchs KH, Thiede A (1999) Long-term results after 75 anastomoses in the upper extraperitoneal rectum with the biofragmentable anastomosis ring. Dig Surg 16:55–59

    Article  PubMed  CAS  Google Scholar 

  74. Påhlman L, Ejerblad S, Graf W et al (1997) Randomized trial of a biofragmentable bowel anastomosis ring in high-risk colonic resection. Br J Surg 84:1291–1294

    Article  PubMed  Google Scholar 

  75. Galizia G, Lieto E, Castellano P et al (1999) Comparison between the biofragmentable anastomosis ring and stapled anastomoses in the extraperitoneal rectum: a prospective, randomized study. Int J Colorectal Dis 14:286–290

    Article  PubMed  CAS  Google Scholar 

  76. Cahill CJ, Betzler M, Gruwez JA, Jeekel J, Patel JC, Zederfeldt B (1989) Sutureless large bowel anastomosis: European experience with the biofragmentable anastomosis ring. Br J Surg 76:344–347

    Article  PubMed  CAS  Google Scholar 

  77. Luukkonen P, Järvinen HJ, Haapiainen R (1990) Early experience with biofragmentable anastomosis ring in colon surgery. Acta Chir Scand 156:765–769

    Google Scholar 

  78. Debus ES, Engemann R, Thiede A (1995) Tools to facilitate Valtrac anastomosis. In: Engemann R, Thiede A (eds) Compression anastomosis by biofragmentable rings. Proceedings of the second European workshop. Springer, Berlin, pp 35–43

  79. Schneider IH, Schneider C, Thaler K, Reck T, Köckerling F (1994) Intraperitoneal colon anastomosis with laparoscopic purse string suture clamp and Valtrac ring. Langenbecks Arch Chir 379:188–192

    Article  PubMed  CAS  Google Scholar 

  80. Köckerling F, Schneider C, Reck T (1995) Laparoskopische Anastomosierungsverfahren am Dickdarm: Kritische Bewertung aus Tierexperiment und klinischer Praxis. Chir Gastroenterol 11:246–251

    Article  Google Scholar 

  81. Eigler FW, Gross E (1986) Mechanical compression anastomosis (AKA-2) of the colon and rectum. Results of a prospective clinical study. Chirurg 57:230–235

    PubMed  CAS  Google Scholar 

  82. Matos D, Phillips RK (1993) Initial experience with the AKA-2 and AKA-4 device for intestinal compression anastomosis in colorectal surgery. Rev Assoc Med Bras 39:8–11

    PubMed  CAS  Google Scholar 

  83. Gross E, Köppen HO (1993) The AKA-2 sutureless compression anastomosis of the colon and rectum. Zentralb Chir 118:459–465

    CAS  Google Scholar 

  84. Zakharash MP, Tkachenko FH, Poǐda OI, Zhel’man VO, Kryvoruk MI, Dubovyǐ VA (2001) Application of apparatus AKA-2 in the reconstructive-restorative surgery of the left half of the colon and rectum. Klin Khir 3:31–33

    PubMed  Google Scholar 

  85. Nudelman I, Fuko V, Rubin M, Lelcuk S (2004) A nickel-titanium memory-shape device for colonic anastomosis in laparoscopic surgery. Surg Endosc 18:1085–1089

    Article  PubMed  CAS  Google Scholar 

  86. D’Hoore A, Hompes D, Folkesson J, Penninckx F, Påhlman L (2008) Circular ‘superelastic’ compression anastomosis: from the animal lab to clinical practice. Minimally Invasive Ther 17:172–175

    Article  Google Scholar 

  87. Dauser B, Herbst F (2009) NiTi endoluminal compression anastomosis ring (ColonRing): a breakthrough in compression anastomoses? Eur Surg 41:116–119

    Article  Google Scholar 

  88. Dauser B, Winkler T, Lonscar G, Herbst F (2011) Compression anastomosis revisited: prospective audit of short- and medium-term outcomes in 62 rectal anastomoses. World J Surg [EPub ahead of print]. doi:10.1007/s00268-011-1135-2

  89. Tulchinsky H, Kashtan H, Rabau M, Wasserberg N (2010) Evaluation of the NiTi shape memory BioDynamix Colon Ring in colorectal anastomosis: first in human multi-center study. Int J Colorect Dis 25:1453–1458

    Article  Google Scholar 

  90. Gross E (2010) The sutureless compression anastomosis CAR 27 in colon and rectum. Results in 46 patients. In: 5th ESCP Meeting, Sorrento, 625 (A)

  91. Shteinberg D, Sroka G, Misharsky F, Matter I (2010) Nitinol compression anastomosis ring for restoration of intestinal continuity after recto-sigmoid resections. SAGES restoration of intestinal continuity after recto-sigmoid resections. 12th World Congress of Endoscopic Surgery, Landover, ETP34 (A)

  92. Buchberg BS, Masoomi H, Bergman H, Mills SD, Stamos MJ (2011) The use of a compression device as an alternative to hand-sewn and stapled colorectal anastomoses: is three a crowd? J Gastrointest Surg 15:304–310

    Article  PubMed  Google Scholar 

  93. Masoomi H, Mills S, Carmichael JC, Senagore AJ, Stamos MJ (2011) Compression anastomosis ring device in colorectal anastomosis: a review of 1,180 patients. Eurasian Colorectal Technologies Association meeting, June 15th–17th, Turin, Italy

  94. Spirev V, Plotnikov V, Vlasov A, Nazarova D (2011) Compression ileocolic anastomosis for colon cancer surgery. Eurasian Colorectal Technologies Association meeting, June 15th–17th, Turin, Italy. Tech Coloproctol 15:223

  95. Vlasov A, Vazhenin A, Plotnikov V, Spirev V, Nazarova D (2011) Clinical application of a new placement device for the NiTi compression anastomosis ring in rectal cancer surgery. Eurasian Colorectal Technologies Association meeting, June 15th–17th, Turin, Italy. Tech Coloproctol 15:229

  96. Koo EJ, Choi HJ, Woo JH et al. (2011). Anastomosis by use of compression anastomosis ring (CAR 27) in laparoscopic surgery for left-sided colonic tumor. Int J Colorectal Dis [EPub ahead of Print]

  97. Jun J-A, Chun H-K, Cho YB, Yun SH, Kim HC, Lee WY (2011) Validation of NiTi Shape Memory ColonRingTM in colonic anastomosis for curative anterior resection: prospective, non-comparative, single centre study. 6th ESCP meeting 24–26th September, Copenhagen, OP 22 (A)

  98. Avgoustou C, Penlidis P, Tsakpini A, Sioros C, Fountas S, Giannousis D (2011) Compression anastomoses in colorectal surgery with the NiTi ColonRingTM. 6th ESCP meeting, 24–26th September, Copenhagen, OP 51 (A)

  99. Avgoustou C, Penlidis P, Sioros C et al (2011) Colon to colon, small bowel to colon and colorectal anastomoses with the compression anastomotic ring NiTi CAR 27. Clinical study. Hellenic J Surg 83:126–132

    Article  Google Scholar 

  100. Avgoustou C, Penlidis P, Tsakpini A, Sioros C, Giannousis D (2012) Compression anastomosis in colon and rectal surgery with the NiTi ColonRing. Tech Coloproctol 16:29–35

    Article  PubMed  CAS  Google Scholar 

  101. Gullichsen R, Ovaska J, Havia T, Yrjänä J, Ekfors T (1993) What happens to the Valtrac® anastomosis of the colon? A follow-up study. Dis Colon Rectum 36:362–365

    Article  PubMed  CAS  Google Scholar 

  102. Song C, Frank T, Cuschieri A (2005) Shape memory alloy clip for compression colonic anastomosis. J Biomech Eng 127:351–354

    Article  PubMed  Google Scholar 

  103. Czerny V (1896) Über den Einsatz der Darmnaht durch den Murphyknopf. Centralb Chir 10:121

    Google Scholar 

  104. Frank J (1897) Intestinal anastomosis. JAMA 28:1163

  105. Garampazzi C (1897) Un nuovo bottone (alla Murphy) scomponibilie. Riforma Med 4:27

    Google Scholar 

  106. Boari A (1897) Modificazioni al bottone anastomotico di Murphy. Arch Atti Soc Ital Chir 1:45

    Google Scholar 

  107. Izbicki JR, Gawad KA, Quirrenbach S et al (1998) Is the stapled suture in visceral surgery still justified? A prospective, controlled, randomized study of cost effectiveness of manual and stapler suture. Chirurg 69:725–734

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

AP Zbar, M Rabau and A Senagore are NiTi consultants. Y Nir and A Weizman are NiTi employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbar, A.P., Nir, Y., Weizman, A. et al. Compression anastomoses in colorectal surgery: a review. Tech Coloproctol 16, 187–199 (2012). https://doi.org/10.1007/s10151-012-0825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10151-012-0825-6

Keywords

Navigation