Skip to main content
Log in

Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Balloon-expandable and self-expandable stents are the two types of coronary stents available. Basically, they differ in the modality of expansion.

The present study analyses the stress state induced on the vascular wall, by the expansion of balloon- and self-expandable stents, using the finite element method. Indeed, modified mechanical stress state is in part responsible in the restenosis process. The balloon-expandable stents herein investigated are assumed to be made of stainless steel, while the self-expandable stents are made of a shape memory alloy. The effects of the severity of the coronary stenosis, the atherosclerotic plaque stiffness and the stent design are investigated. Comparing the self-expandable stent with the balloon-expandable one, the former induces fewer stresses and lower damage to the vessel, but, on the other hand, its lower stiffness induces a lower capability to restore vasal lumen and to contrast arterial elastic recoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4. a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auricchio F, Petrini L (2002) Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int J Num Meth Eng 55:1255–1284

    Article  Google Scholar 

  • Auricchio F, Di Loreto M, Sacco E (2001) Finite-element analysis of a stenotic revascularization through a stent insertion. Comput Meth Biomech Biomed Eng 4:249–264

    Google Scholar 

  • Bassiouny HS, Zarins CK, Kadowaki MH, Glagov S (1994) Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc Surg 19:426–434

    CAS  PubMed  Google Scholar 

  • Carter AJ, Scott D, Laird JR, Bailey L, Kovach JA, Hoopes TG, Pierce K, Heath K, Hess K, Farb A, Virmani R (1998) Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model. Cathet Cardiovasc Diagn 44:193-201

    Article  CAS  PubMed  Google Scholar 

  • Degertekin M, Regar E, Tanabe K, Lemos P, Lee CH, Smits P, de Feyter P, Bruining N, Sousa E, Abizaid A, Ligthart J, Serruys PW (2003) Evaluation of coronary remodeling after sirolimus-eluting stent implantation by serial three-dimensional intravascular ultrasound. Am J Cardiol 91:1046–1050

    Article  PubMed  Google Scholar 

  • Dumoulin C, Cochelin B (2000) Mechanical behaviour modelling of balloon-expandable stents. J Biomech 33:1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Edelman ER, Rogers C (1998) Pathobiologic response to stenting. Am J Cardiol 81(7A):4E-6E

    Article  CAS  PubMed  Google Scholar 

  • Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr Opin Cardiol 15:430–440

    Article  CAS  PubMed  Google Scholar 

  • Funakubo H (1987) Shape memory alloys. Taylor & Francis, London

  • Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 13:310–315

    CAS  PubMed  Google Scholar 

  • Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A (1997) In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998

    CAS  PubMed  Google Scholar 

  • Gourisankaran V, Sharma MG (2000) The finite-element analysis of stresses in atherosclerotic arteries during balloon angioplasty. Crit Rev Biomed Eng 28:47–51

    CAS  PubMed  Google Scholar 

  • Green AE, Zerna W (1968) Theoretical Elasticity. Clarendon Press, Oxford

  • Gyongyosi M, Yang P, Khorsand A, Glogar D (2000) Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J Am Coll Cardiol 35:1580–1589

    Article  CAS  PubMed  Google Scholar 

  • Han RO, Schwartz RS, Kobayashi Y, Wilson SH, Mann JT, Sketch MH, Safian RD, Lansky A, Popma J, Fitzgerald PJ, Palacios IF, Chazin-Caldie M, Goldberg S (2001) Comparison of self-expanding and balloon-expandable stents for the reduction of restenosis. Am J Cardiol 88:253–259

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty using Magnetic Resonance Imaging and Mechanical Testing. Ann Biomed Eng 30:753–767

    Article  PubMed  Google Scholar 

  • Jiang Y, Kohara K, Hiwada K (1999) Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients. Hypertens Res 22:203–207

    CAS  PubMed  Google Scholar 

  • Jiang Y, Kohara K, Hiwada K (2000) Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke 31: 2319–2324

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Honda Y, Christie GL, Teirstein PS, Bailey SR, Brown CL III, Matthews RV, De Franco AC, Schwartz RS, Goldberg S, Popma JJ, Yock PG, Fitzgerald PJ (2001) Long-term vessel response to a self-expanding coronary stent: a serial volumetric intravascular ultrasound analysis from the ASSURE trial. J Am Coll Cardiol 37:1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Lee R T, Loree HM, Cheng GC, Lieberman EH, Jaramillo N, Schoen FJ (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: Prediction of plaque fracture locations. J Am Coll Cardiol 21:777–782

    CAS  PubMed  Google Scholar 

  • Leon M, Teirstein P, Moses J, Tripuraneni P, Lansky AJ, Jani S, Wong SC, Fish D, Ellis S, Holmes DR, Kerieakes D, Kuntz RE (2001) Localized intracoronary gamma radiation therapy to inhibit the recurrence of restenosis after stenting (GAMMA-1). N Engl J Med 344:250–256

    Article  PubMed  Google Scholar 

  • Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35:803–811

    Article  PubMed  Google Scholar 

  • Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB (1997) Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation 95:1791–1798

    CAS  PubMed  Google Scholar 

  • Moore JE, Berry JL (2002) Fluid and solid mechanical implications of vascular stenting. Ann Biomed Eng 30:498–508

    Article  PubMed  Google Scholar 

  • Morice MC, Surruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico (2002) A Randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Kleinberger M, McElhaney JH (1994) Finite-element analysis of balloon angioplasty. Med Biol Eng Comput 32: S108–S114

    CAS  PubMed  Google Scholar 

  • Petrini L, Migliavacca F, Dubini G, Auricchio F (2004) Numerical investigation of the intravascular coronary stent flexibility. J Biomechanics 37:495–504

    Article  Google Scholar 

  • Popma JJ, Suntharalingam M, Lansky AJ, Heuser RR, Speiser B, Teirstein PS, Massullo V, Bass T, Henderson R, Silber S, von Rottkay P, Bonan R, Ho KK, Osattin A, Kuntz RE (2002) Randomized trial of 90Sr/90Y beta-radiation versus placebo control for treatment of in-stent restenosis (START). Circulation 106:1090–1096

    Article  PubMed  Google Scholar 

  • Prendergast PJ, Lally C, Daly S, Reid AJ, Lee TC, Quinn D, Dolan F (2003) Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modelling. J Biomech Eng 125:692–699

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Tseng DY, Squere JC, Edelman ER (1999). Balloon-artery interactions during stent placement. A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ Res 84:378–383

    CAS  PubMed  Google Scholar 

  • Salunke NV, Topoleski LDT, Humphrey JD, Mergner WJ (2001) Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mater Res 55:236–241

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi G, Taylor AJ, Farb A, Carter AJ, Edwards WD, Holmes DR, Schwartz RS, Virmani R (1999) Histopathology of postpercutaneous trans-luminal coronary angioplasty remodeling in human coronary arteries. Am Heart J 138:681–687

    CAS  PubMed  Google Scholar 

  • Saul GD (1999) Arterial stress from intraluminal pressure modified by tissue pressure offers a complete explanation for the distribution of atherosclerosis. Med Hypotheses 52:349–351

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RS, Topol EJ, Serruys PW, Sangiorgi G, Holmes DR Jr (1998) Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol 32:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RS, Henry TD. (2002) Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med 3 Suppl 5: S4-S9

    Google Scholar 

  • Shih CC, Shih CM, Chen YL, Su YY, Shih JS, Kwok CF, Lin SJ (2001) Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire. J Biomed Mater Res 57:200–207

    Article  CAS  PubMed  Google Scholar 

  • Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 104:2007–2011

    CAS  PubMed  Google Scholar 

  • Stergiopulos N, Vulliemoz S, Rachev A, Meister J-J, Greenwald SE (2001) Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J Vasc Res 38:237–246

    Article  CAS  PubMed  Google Scholar 

  • Taylor AJ, Gorman PD, Kenwood B, Hudak C, Tashko G, Virmani R (2001) A comparison of four stent designs on arterial injury, cellular proliferation, neointima formation, and arterial dimensions in an experimental porcine model. Cathet Cardiovasc Intervent 53:420–425

    Article  CAS  Google Scholar 

  • Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M (2002) Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials 23:2997–3005

    Article  CAS  PubMed  Google Scholar 

  • Thubrikar MJ, Robicsek F (1995) Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 59:1594–1603

    Article  CAS  PubMed  Google Scholar 

  • Trepanier C, Leung TK, Tabrizian M, Yahia LH, Bienvenu JG, Tanguay JF, Piron DL, Bilodeau L (1999) Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents. J Biomed Mater Res 48:165–171

    Article  CAS  PubMed  Google Scholar 

  • Virmani R (2002) Self-expanding stent deployment strategies may be the key to reducing in-stent restenosis. Catheter Cardiovasc Interv 56:487–488

    Article  PubMed  Google Scholar 

  • Waksman R, Raizner AE, Yeung AC, Lansky AJ, Vandertie L (2002) Use of localised intracoronary beta radiation in treatment of in-stent restenosis: The INHIBIT randomised controlled trial. Lancet 359:543–544

    Article  PubMed  Google Scholar 

  • Welt FG, Rogers C (2002) Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 22:1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Wentzel JJ, Gijsen FJ, Stergiopulos N, Serruys PW, Slager CJ, Krams R (2003) Shear stress, vascular remodeling and neointimal formation. J Biomech 36:681–688

    Article  PubMed  Google Scholar 

  • Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Migliavacca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliavacca, F., Petrini, L., Massarotti, P. et al. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2, 205–217 (2004). https://doi.org/10.1007/s10237-004-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-004-0039-6

Keywords

Navigation