Skip to main content
Log in

Identification of microRNA-target modules from rice variety Pusa Basmati-1 under high temperature and salt stress

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

High temperature and salinity stress are major factors limiting the growth and productivity of rice crop on a global scale. It is therefore an essential prerequisite to understand the molecular genetic regulation of plant responses to dual stresses. MicroRNAs (miRs) are recognized as key controllers of gene expression which act mainly at the post-transcriptional level to regulate various aspects of plant development. The present study attempts to investigate the miR circuits that are modulated in response to high temperature and salinity stress in rice. To gain insights into the pathway, preliminary miR profiles were generated using the next-generation sequencing (NGS) datasets. The identified molecules were filtered on the basis of fold differential regulation under high temperature, and time kinetics of their expression under the two individual stresses was followed to capture the regulatory windows. The analysis revealed the involvement of common miR regulatory nodes in response to two different abiotic stresses, thereby broadening our perspective about the stress-mediated regulatory mechanisms operative in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PB-1:

Pusa Basmati-1

NGS:

Next Generation Sequencing

miR:

microRNA

miR*:

miR star sequence

nt:

nucleotides

HTS:

High Temperature Stress

SS:

Salt Stress

UTR:

Untranslated Region

sRNA:

small RNA

N-L-PB:

15-day-old PB-1 seedling leaves grown under normal conditions

N-R-PB:

15-day-old PB-1 seedling roots grown under normal conditions

N-FL-PB:

Flag Leaf from PB-1 plants grown under normal conditions

HT-L-PB:

15-day-old PB-1 seedling leaves grown under HTS conditions

HT-R-PB:

15-day-old PB-1 seedling roots grown under HTS conditions

HT-FL-PB:

Flag Leaf from PB-1 plants grown under HTS conditions

NL-Salt:

15-day-old PB-1 seedling leaves grown under SS conditions

NR-Salt:

15-day-old PB-1 seedling roots grown under SS conditions

GO:

Gene Ontology

SPL2:

Squamosa Promoter binding protein Like 2

TOE1:

Target Of EAT1

GRF6:

Growth-Regulating Factor 6

MFEI:

Minimal Folding free Energy Index

DE:

Differentially Expressed

TPM:

Transcript Per Million

AGO:

Argonaute

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpinar BA, Budak H (2016) Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front Plant Sci 7:606

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196:149–161

    Article  CAS  PubMed  Google Scholar 

  • Bita CE and Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

  • Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PCG (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8(3):e59423

    Article  Google Scholar 

  • Budak H, Akpinar BA (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15(11):791–799

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15(5):523–531

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in denovo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma X (2016) Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics 17:423–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ci D, Song YP, Tian M, Zhang DQ (2015) Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front Plant Sci 6:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui N, Sun X, Sun M, Jia B, Duanmu H, Lv D (2015) Over expression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza sativa). Mol Breed 35:214

    Article  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA-and microRNA-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Qi Y (2016) RNAi in plants: an Argonaute-centered view. Plant Cell 28:272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65(8):2119–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fileccia V, Bertolini E, Ruisi P, Giambalvo D, Frenda AS, Cannarozzi G, Martinelli F (2017) Identification and characterization of durum wheat microRNAs in leaf and root tissues. Funct Integr Genomics 17(5):583–598

    Article  CAS  PubMed  Google Scholar 

  • Gálvez S, Mérida-García R, Camino C et al (2019) Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Funct Integr Genomics 19:295–309

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231(5):991–1001

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y (2016) Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2(1):15196

    Article  CAS  Google Scholar 

  • Giusti L, Mica E, Bertolini E, De Leonardis AM, Faccioli P, Cattivelli L, Crosatti C (2017) MicroRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency. Funct Integr Genomics 17(2–3):293–309

    Article  CAS  PubMed  Google Scholar 

  • Goswami K, Tripathi A, Sanan-Mishra N (2017) Comparative miRomics of salt-tolerant and salt-sensitive rice. J Integr Bioinform 14(1)

  • Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:024041

    Article  Google Scholar 

  • Guo HS, Feia JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20(2):88–98

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development. Plant Gene 11B:190–198

    Article  CAS  Google Scholar 

  • Hivrale V, Yun Z, Puli CO, Jagadeeswaran G, Gowdu K, Kakani G (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Int J Plant Sci 242:214–223

    CAS  Google Scholar 

  • Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E, Nick P (2014) Salt adaptation requires suppression of jasmonate signaling. Protoplasma 251(4):881–898

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SV, Murty MV, Quick WP (2015) Rice responses to rising temperatures—challenges, perspectives and future directions. Plant Cell Environ 38(9):1686–1698

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan A, Goswami K, Sopory SK, Sanan-Mishra N (2017) “Mirador” on the potential role of miRNAs in synergy of light and heat networks. Indian J Plant Physiol:1–21

  • Komori T, Imaseki H (2005) Transgenic rice hybrids that carry the Rf-1 gene at multiple loci show improved fertility at low temperature. Plant Cell Environ 28:425–431

    Article  CAS  Google Scholar 

  • Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Rai RD (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomics 15(3):323–348

    Article  CAS  PubMed  Google Scholar 

  • Lauchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PA, Jain SM (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer-Verlag, Dordrecht, pp 1–32

    Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67(1):175–194

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jia S, Shen D, Liu J, Li J, Zhao H, Han S, Wang Y (2012) Four AUXIN RESPONSE FACTORs down regulated by microRNA167 are associated with growth and development in Oryza sativa. Funct Plant Biol 39(9):736–744

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Mei Q, Yu Z, Sun T, Zhang Z, Chen M (2013) An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. J Integr Bioinform 10(2):94–102

    Article  Google Scholar 

  • Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, Van Der Knaap E (2014) Down regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA167 leads to floral development defects and female sterility in tomato. J Exp Bot 65(9):2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50(2):227–231

    Article  CAS  Google Scholar 

  • Mangrauthia SK, Bhogireddy S, Agarwal S (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May P, Liao W, Wu Y, Shuai B, McCombie WR, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145

    Article  PubMed  CAS  Google Scholar 

  • Mekonnen DW, Flugge UI, Ludewig F (2016) Gamma-amino butyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Science, 245:25–34

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20 (12):3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133(1):116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Mukherjee SK, Vasudevan M, Sanan-Mishra N (2013) Identification of tissue-preferential expression patterns of rice miRNAs. J Cell Biochem 114:2071–2081

    Article  CAS  PubMed  Google Scholar 

  • Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168(1):2–18

    Article  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database (Oxford) 2009:bap005

    Article  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9(9):1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27):9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Sun H, Du Y, Zhang J, Li J et al (2013) Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One 8(1):e54148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE 4 in RNA-directed DNA methylation. Nature 443:1008–1012

    Article  PubMed  Google Scholar 

  • Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32(8):1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Kumar V, Sopory SK, Mukherjee SK (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Gen Genomics 282(5):463–474

    Article  CAS  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Mittal D, Sanan-Mishra N (2015) Profiling the expression domains of a rice-specific microRNA under stress. Front Plant Sci 6:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Mittal D, Sanan-Mishra N (2017) Micro-regulators of hormones and stress. In: Mechanism of plant hormone signaling under stress, pp 319–351

    Chapter  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    Article  CAS  PubMed  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Chacon O, Lata Singla-Pareek S, Sopory SK, Sanan-Mishra N (2018) Mapping the microRNA expression profiles in glyoxalase overexpressing salinity tolerant rice. Curr Genomics 19(1):21–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unver T, Namuth-Covert DM, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. Int J Plant Genomics 2009

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaucheret H (2008) Plant Argonautes. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7(11):e48445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH et al (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhou H, Zhan Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C et al (2012) OsTIR1 and OsAFB2 down regulation via OsmiR393 over expression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7(1):e300039

    Article  CAS  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL et al (2013) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65(1):89–101

    Article  PubMed  CAS  Google Scholar 

  • Yan JQ, Wang J, Li QT, Hwang JR, Patterson C, Zhang H (2013) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869

    Article  CAS  Google Scholar 

  • Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39 (database issue:D202–D209

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63(2):1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z (2014) Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. J Integr Plant Biol 56:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Yu Y, Wang C-Y, Li Z-Y, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31(9):848–852

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17(1):233–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Aslam and Dr. S.K. Mukherjee for generation of the sRNA libraries.

Funding

This research was supported by financial grants received from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SG and NSM conceptualized and designed the study. SG, VP and KG performed the experiments. SG, MP and NSM drafted and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neeti Sanan-Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2709 kb)

Table S2

List of primers (XLSX 11 kb)

Table S3

List of known miR distribution across libraries (XLSX 182 kb)

Table S4

Venn distribution analysis of known miRs (XLS 48 kb)

Table S5

List of novel miR and miR* distribution (XLS 34 kb)

Table S6

Targets of miR star sequences (XLS 395 kb)

Table S7

Targets of validated known and novel miRs (XLSX 31 kb)

Table S8

List of known and novel miR clusters by k-means clustering analysis (XLSX 63 kb)

Table S9

List of degradome libraries and validated targets (XLSX 14 kb)

Table S10

NGS data for salt stress (XLSX 40 kb)

Table S11

List of QTLs (XLSX 122 kb)

Table S12

Gene ontology analysis (XLSX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Goswami, K., Pandey, V.K. et al. Identification of microRNA-target modules from rice variety Pusa Basmati-1 under high temperature and salt stress. Funct Integr Genomics 19, 867–888 (2019). https://doi.org/10.1007/s10142-019-00673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00673-4

Keywords

Navigation