Skip to main content
Log in

microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121. doi:10.1261/rna.1774909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpinar BA, Kantar M, Budak H (2015) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 15:587–598. doi:10.1007/s10142-015-0453-0

    Article  CAS  PubMed  Google Scholar 

  • Aprile A, Havlickova L, Panna R, Marè C, Borrelli GM, Marone D, Perrotta C, Rampino P, De Bellis L, Curn V, Mastrangelo AM, Rizza F, Cattivelli L (2013) Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics 14:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751. doi:10.1261/rna.035279.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu J, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim et Biophys Acta 1820(8):1283–1293

    Article  Google Scholar 

  • Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E (2015) miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 16:393. doi:10.1186/s12864-015-1610-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inzé D, Pè ME, Mica E (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6:423–443. doi:10.1093/mp/sss160

    Article  CAS  PubMed  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656. doi:10.1038/emboj.2009.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Cheah BH, Nadaraja K, Divate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profile between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genomics 16(1):692

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Bi 25:21–44. doi:10.1146/annurev.cellbio.042308.113417

    Article  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 107:15269–15274. doi:10.1073/pnas.1001738107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho M, Cho HT (2013) The function of ABCB transporter in auxin transport. Plant Signal Behav 8(2), e22990

    Article  PubMed  Google Scholar 

  • Contreras-Cubas C, Rabanal FA, Arenas-Huertero C, Ortiz MA, Covarrubias AA, Reyes JL (2012) The Phaseolus vulgaris miR159a precursor encodes a second differentially expressed microRNA. Plant Mol Biol 80:103–115. doi:10.1007/s11103-011-9847-0

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003. doi:10.1038/nsmb.1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442. doi:10.1105/tpc.110.082784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva DLR, Cox RC, Hetherington AM, Mansfield TA (1985) Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid. New Phytol 101:555–563

    Article  Google Scholar 

  • De Vita P, Li Destri Nicosia O, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53

    Article  Google Scholar 

  • Dharmasiri S, Estelle M (2002) The role of regulated protein degradation in auxin response. Plant Mol Biol 49(3-4):401–409

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086. doi:10.1093/jxb/ert164

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • El-kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein LG (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7(12):e52030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. Methods Mol Biol (Clifton, NJ) 592:51D57. doi:10.1007/978-1-60327-005-2_4

    Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ (2016) Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ. doi:10.1111/pce.12764

    PubMed  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. doi:10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Frontiers in Plant Sci. doi:10-3389/fpls.2015.00057

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J. doi:10.1111/pbi.12220

    PubMed  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741. doi:10.1146/annurev-arplant-050213-040000

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys Acta 1819:137–148

    CAS  Google Scholar 

  • Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S, Shimazaki K (2011) FLOWERING LOCUS T regulates stomatal opening. Curr Biol 21:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi:10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M et al (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2.Nat. Cell Biol 10(10):1217–1223

    CAS  Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses. Water, Salt and other Stresses. Academic Press NY 1: 129-186.

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttransciptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA (2015) Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS One 10:e0142799. doi:10.1371/journal.pone.0142799

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Able AJ, Able JA (2016) Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics. doi: 10.1007/s10142-016-0515-y.

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Xin Z, Wang Z, Yang O, Guo S, Guo X, Cao L, Lin T (2015) Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat genotypes during dehydration stress. BMC Plant Biol 15:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet journal 17:10–12

  • Mcginnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekonnen DW, Flügge UI, Ludewig F (2016) Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci 245:25–34. doi:10.1016/j.plantsci.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26(13):3216–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J-K (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshelion M, Halperin O, Wallach R, Oren R, Way D (2015) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell Environ 38:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Panio G, Motzo R, Mastrangelo AM, Marone D, Cattivelli L, Giunta F, De Vita P (2013) Molecular mapping of stomatal-conductance-related traits in durum wheat (Triticum turgidum ssp. durum). Ann Appl Biol 162:258–270

    Article  CAS  Google Scholar 

  • Phookaew P, Netrphan S, Sojikul P, Narangajavana J (2014) Involvement of miR164- and miR167-mediated target gene expressions in responses to water deficit in cassava. Biol Plantarum 58:469–478. doi:10.1007/s10535-014-0410-0

    Article  CAS  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genom 12:327–339

    Article  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rizza F, Ghashghaie J, Meyer S, Matteu L, Mastrangelo AM, Badeck FW (2012) Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crop Res 125:49–60

    Article  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399. doi:10.1105/tpc.113.113159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohtdric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7(11):e48445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T (2013) Overexpression of plasma membrane H + -ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc Natl Acad Sci U S A 111:533–538

    Article  PubMed  PubMed Central  Google Scholar 

  • Windels D, Vazquez F (2011) miR393: integrator of environmental cues in auxin signaling? Plant Signal Behav 6(11):1672–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Poethig S (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Liu D, Wu J, Zhang R, Qin Z, Liu D, Li A, Fu D, Zhai W, Mao L (2013) Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium dystachion. Plant Cell 25:4363–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Ding D, Shi C, Xue Y, Zhang Z, Tang G, Tang J (2016) microRNA-dependent gene regulatory networks in maize leaf senescence. BMC Plant Biol 16:73. doi:10.1186/s12870-016-0755-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7(1):e30039. doi:10.1371/journal.pone.0030039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bai H, Liu C, Chen E, Chen Q, Zhuang J, Shen B (2014) Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One 9:e114313. doi:10.1371/journal.pone.0114313

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141. doi:10.1186/s12870-015-0532-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gao S, Zhou X, Xia J, Chellappan P, Zhou X, Zhang X, Jin H (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11:R81

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA 169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10(29) doi:10.1186/1471-2199-10-29.

Download references

Acknowledgments

This work was supported by the Italian Ministry of Education, University and Research, project “PON01_01145-ISCOCEM.”

Author contributions

LG conducted the wet lab work and data analysis. EM interpreted the bioinformatics data and wrote the manuscript. EB designed and carried out all the computational analyses for microRNA identification and differential expression analysis. AMDL prepared the plants and RNA samples. PF contributed to bioinformatics analysis. LC designed the study, contributed to the development of the project, and edited the manuscript. CC conducted the wet lab work and wrote the manuscript. All authors have read, edited, and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Crosatti.

Additional information

This article forms part of a special issue of Functional & Integrative Genomics entitled “miRNA in model and complex organisms” (Issue Editors: Hikmet Budak and Baohong Zhang)

Lorenzo Giusti and Erica Mica contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOCX 14 kb)

Esm 2

(DOCX 15 kb)

Esm 3

(DOCX 44 kb)

Esm 4

(XLSX 61 kb)

Esm 5

(DOCX 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giusti, L., Mica, E., Bertolini, E. et al. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency. Funct Integr Genomics 17, 293–309 (2017). https://doi.org/10.1007/s10142-016-0527-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0527-7

Keywords

Navigation