Skip to main content
Log in

Over-expression of osa-MIR396c decreases salt and alkali stress tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Salt and alkali stress are two of the main environmental factors limiting rice production. Thus, understanding the mechanisms of salinity and alkali stress tolerance is necessary to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are ~21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. In plants, miRNAs constitute one of five classes of small RNAs that function primarily as negative regulators for gene expression at the posttranscriptional level. Several plant miRNAs, such as miR396, play vital roles in plant growth, development and resistance to stresses. In this study, we identified osa-MIR396c, which shows dramatic transcript change under salt and alkali stress conditions in Oryza sativa. We designed an experiment to detect miRNA–target interaction and demonstrated that several transcription factors related to growth, development, and stress tolerance are targeted by osa-MIR396c. Transgenic rice and Arabidopsis thaliana plants constitutively over-expressing osa-MIR396c showed reduced salt and alkali stress tolerance compared to that of wild-type plants. Overall, this study further established a link between salt and alkali stress and osa-MIR396c in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

TF:

Transcription factor

GRF:

Growth-regulating factor

MS-medium:

Murashige and Skoog medium

IRRI:

International Rice Research Institute

GEO:

Gene expression omnibus

NCBI:

National Center for Biotechnology Information

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription PCR

pre-miRNA:

miRNA precursor

RGRC:

Rice Genome Resource Center

GFP:

Green fluorescent protein

PGR:

Plant growth regulator

ABA:

Abscisic acid

RACE:

Rapid amplification of cDNA ends

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  Google Scholar 

  • Beitzinger M, Peters L, Zhu JY et al (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4:76–84

    CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty R, Banerjee R, Chung SM, Farman M, Citovsky V, Hogenhout SA, Tzfira T, Goodin M (2007) pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana–virus interactions. Mol Plant Microbe Interact 20:740–750

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    Article  CAS  PubMed  Google Scholar 

  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T et al (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48:523–539

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jose′-Estanyol M, Pérez P, Puigdomènech P (2005) Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene 356:146–152

    Article  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S et al (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ et al (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Ohshima M, Itoh H, Matsuoka M, Murakami T, Ohashi Y (1990) Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis-related 1a protein gene in transgenic tobacco. Plant Cell 2:95–106

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Pan X, Wilson IW, Li F, Liu M, Teng W, Zhang B (2009) High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 436:37–44

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553

    Article  CAS  PubMed  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K et al (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  Google Scholar 

  • Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  CAS  PubMed  Google Scholar 

  • Yazaki J, Shimatani Z, Hashimoto A, Nagata Y et al (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Los Banos, Philippines

    Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Key Research Plan of Heilongjiang Province (GA06B103-3), the Innovation Research Group of NEAU (CXT004), the “863” project (2008AA10Z153), and the Basic Research Preliminary Study Foundation of the Ministry of Science and Technology of the PRC (2003CCA03500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Bai, X., Yang, L. et al. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231, 991–1001 (2010). https://doi.org/10.1007/s00425-010-1104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1104-2

Keywords

Navigation