Skip to main content
Log in

Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Geminiviruses are widely distributed throughout the world and cause devastating yield losses in almost all the economically important crops. In this review, the newly identified roles of various novel plant factors and pathways participating in plant–virus interaction are summarized with a particular focus on the exploitation of various pathways involving ubiquitin/26S proteasome pathway, small RNA pathways, cell division cycle components, and the epigenetic mechanism as defense responses during plant–pathogen interactions. Capturing the information on these pathways for the development of strategies against geminivirus infection is argued to provide the basis for new genetic approaches to resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbergenov R, Si-Ammour A, Blevins T et al (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amin I, Patil BL, Briddon RW, Mansoo S, Fauquet CM (2011a) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM (2011b) Comparison of phenotypes produced in response to transient expression of genes encoded by four distinct begomoviruses in Nicotiana benthamiana and their correlation with the levels of developmental miRNAs. Virol J 8:238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baek DW, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    Article  PubMed  CAS  Google Scholar 

  • Baliji S, Lacatus G, Sunter G (2010) The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virol 402:238–247

    Article  CAS  Google Scholar 

  • Bar-Ziv A, Levy Y, Hak H, Mett A, Belausov E, Citovsky V, Gafni Y (2012) The Tomato yellow leaf curl virus (TYLCV) V2 protein intractes with the host papain-like cysteine protease CYP1. Plant signal behav 7:983–989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bian X-Y, Rasheed MS, Seemanpillai M, Rezaian A (2006) Analysis of silencing escape of Tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact 19:614–624

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins F Jr, Hohn T, Pooggin MM (2011) Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucl Acids Res 39:5003–5014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bruce G, Gu M, Shi N, Liu Y, Hong Y (2011) Influence of retinoblastoma-related gene silencing on the initiation of DNA replication by African cassava mosaic virus Rep in cells of mature leaves in Nicotiana benthamiana plants. Virol J 8:561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    Article  PubMed  CAS  Google Scholar 

  • Chague V, Mercier JC, Guenard AD, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet C (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen M, Ha M, Lackey E, Wang J, Chen ZJ (2008) RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids. Genetics 178:1845–1858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q (2010) Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. Plant J 62:12–23

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A (2009) Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 20:1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Collazo C, Ramos PL, Chacon O, Borroto CJ, Lopez Y, Pujol M, Thomma BPHJ, Hein I, Borras-Hidalgo O (2006) Phenotypical and molecular characterization of the Tomato mottle Taino virus-Nicotiana megalosiphon interaction. Physiol Mol Plant Pathol 67:231–236

    Article  CAS  Google Scholar 

  • Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R (2013) Discovering host genes involved in the infection by the Tomato yellow leaf curl virus complex and in the establishment of resistance to the virus using Tobacco rattle virus-based post transcriptional gene silencing. Viruses 5:998–1022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dielen AS, Badaoui S, Candresse T, German-Retana S (2010) The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol 11:293–308

    Article  PubMed  CAS  Google Scholar 

  • Egelkrout EM, Robertson D, Hanley-Bowdoin L (2001) Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13:1437–1452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elena SF, Rodrigo G (2012) Towards an integrated molecular model of plant-virus interactions. Curr Opin Virol 2:719–724

    Article  PubMed  CAS  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H (2009) Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 71:157–171

    Article  PubMed  CAS  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H (2010) Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 231:537–548

    Article  PubMed  CAS  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EP (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545–2556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2011) A typical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guevara-Olvera L, Ruíz-Nito ML, Rangel-Cano RM, Torres-Pacheco I, Rivera-Bustamante RF, Muñoz-Sánchez CI, González-Chavira MM, Cruz-Hernandez A, Guevara-González RG (2012) Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper (Capsicum chinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiol Mol Plant Pathol 78:45–50

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Venkataramappa M, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20

    CAS  Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Rep Tomato Genet Coop 56:17–18

    Google Scholar 

  • Ji Y, Scott JW (2006) Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rep Tomato Genet Coop 56:22–25

    Google Scholar 

  • Ji Y, Scott JW, Maxwell DP, Schuster DJ (2008) Ty-4, a tomato yellow leaf curl virus resistance gene on chromosome 3 of tomato. Rep Tomato Genet Coop 58:29–31

    Google Scholar 

  • Jordan CV, Shen W, Hanley-Bowdoin LK, Robertson D (2007) Geminivirus-induced gene silencing of the tobacco retinoblastoma-related gene results in cell death and altered development. Plant Mol Biol 65:163–175

    Article  PubMed  CAS  Google Scholar 

  • Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK (2012) A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 26:1142–1160

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8:e1003018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kong KL, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, Wettstein DV, Liu B (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L). J Plant Physiol 168:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H, Xie Q (2009) RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J 57:905–917

    Article  PubMed  CAS  Google Scholar 

  • Larsen R, Miklas PN (2004) Generation and molecular mapping of a SCAR marker linked with the Bct gene for resistance to Beet curly top virus in common bean. Phytopathol 94:320–325

    Article  CAS  Google Scholar 

  • Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER (2011) Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS ONE 6:e22383

    Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, Carolino SMB, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EPB (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virol 318:24–31

    Article  CAS  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  PubMed  CAS  Google Scholar 

  • Mubin M, Hussain M, Briddon RW, Mansoor S (2011) Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. Virol J 8:122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38:433–449

    Article  PubMed  CAS  Google Scholar 

  • Naqvi AR, Choudhury NR, Haq QM, Mukherjee SK (2008) MicroRNAs as biomarkers in tomato leaf curl virus (ToLCV) disease. Nucleic Acids Symp Ser (Oxf) 52:507–508

    Article  CAS  Google Scholar 

  • Naqvi AR, Haq QM, Mukherjee SK (2010) MicroRNA profiling of tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QM, Mukherjee SK (2011a) Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res 160:395–399

    Article  PubMed  CAS  Google Scholar 

  • Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM (2011b) In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem 49:13–17

    Article  PubMed  CAS  Google Scholar 

  • Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotech 24:1420–1428

    Article  CAS  Google Scholar 

  • Oerke E-C, Dehne H-W (2004) Safeguarding production-pests, losses and crop protection in major crops. Crop Protect 23:275–285

    Article  Google Scholar 

  • Osorno JM, Mun˜oz CG, Beaver JS, Ferwerda FH, Bassett MJ, Miklas PN, Olczyk T (2007) Two genes from Phaseolus coccineus confer resistance to Bean golden yellow mosaic virus in common bean. J Am Soc Hortic Sci 132:530–533

    Google Scholar 

  • Pajerowska-Mukhtar K, Dong X (2009) A kiss of death-proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes Dev 23:2449–2454

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paprotka T, Deuschle K, Metzler V, Jeske H (2011) Conformation-selective methylation of geminivirus. DNA J Virol 85:12001–12012

    Article  CAS  Google Scholar 

  • Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, Im KH, Yun DJ, Lee S, Davis KR (2011) The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS One 6:e20054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Patil BL, Fauquet CM (2010) Differential interaction between cassava mosaic geminiviruses and geminivirus satellites. J Gen Virol 91:1871–1882

    Article  PubMed  CAS  Google Scholar 

  • Pierce EJ, Rey ME (2013) Assessing global transcriptome changes in response to South African cassava mosaic virus [ZA-99] infection in susceptible Arabidopsis thaliana. PLoS One 8(6):e67534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Piroux N, Saunders K, Page A, Stanley J (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virol 362:428–440

    Article  CAS  Google Scholar 

  • Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against Geminiviruses. J Virol 82:8997–9007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  PubMed  CAS  Google Scholar 

  • Rouhibakhsh A, Choudhury NR, Mukherjee SK, Malathi VG (2012) Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus. Virus Genes 44:356–361

    Article  PubMed  CAS  Google Scholar 

  • Sahu PP, Rai NK, Chakraborty S, Singh M, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544

    Article  PubMed  CAS  Google Scholar 

  • Sahu PP, Rai NK, Puranik S, Roy A, Khan M, Prasad M (2012a) Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with Tomato Leaf Curl New Delhi Virus. Mol Biotechnol 52:140–150

    Article  PubMed  CAS  Google Scholar 

  • Sahu PP, Puranik S, Khan M, Prasad M (2012b) Recent advances in tomato functional genomics: utilization of VIGS. Protoplasma 249:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. doi:10.1007/s00299-013-1462-x

  • Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, Hanley-Bowdoin L, Bejarano ER (2011) Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol 85:9789–9800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Santos AA, Lopes KV, Apfata JA, Fontes EP (2010) NSP-interacting kinase, NIK: a transducer of plant defence signalling. J Exp Bot 61:3839–3845

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Singh N, Ranade SA, Babu SG (2011) Strategy for a generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 43:409–434

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Sahu PP, Puranik S, Prasad M (2012) Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol Biotechnol. doi:10.1007/s12033-012-9615-7

  • Shen W, Reyes MI, Hanley-Bowdoin L (2009) Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol 150:996–1005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shen Q, Bao M, Zhou X (2012) A plant kinase plays roles in defense response against geminivirus by phosphorylation of a viral pathogenesis protein. Plant Signal Behav 7:888–892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simón-Mateo C, García JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophy Acta 1809:722–731

    Article  CAS  Google Scholar 

  • Singh K, Talla A, Qiu W (2012) Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs. Funct Integr Genomics 12:659–669

    Article  PubMed  CAS  Google Scholar 

  • Suji KK, Joel John A (2010) An epigenetic change in rice cultivars under water stress conditions. Elect J Plant Breed 1:1142–1143

    Google Scholar 

  • Suty L, Lequeu J, Lançon A, Etienne P, Petitot AS, Blein JP (2003) Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of "plant defense proteasomes". Int J Biochem Cell Biol 35:637–650

    Article  PubMed  CAS  Google Scholar 

  • Suyal G, Mukherjee SK, Choudhury NR (2013) The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol. doi:10.1007/s00705-013-1675-x

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakley E, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Velez JJ, Bassett MJ, Beaver JS, Molina A (1998) Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Hortic Sci 123:628–631

    Google Scholar 

  • Vu TV, Roy Choudhury N, Mukherjee SK (2012) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. doi:10.1016/jvirusres201212008

  • Welz HG, Schechert A, Pernet A, Pixley K, Geiger HH (1998) A gene for resistance to the maize streak virus in the African CIMMYT maize inbred line CML202. Mol Breed 4:147–154

    Article  CAS  Google Scholar 

  • Xie Q, Suárez-López P, Gutiérrez C (1995) Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region specific siRNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol Plant Microbe Interact 24:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Yadava P, Mukherjee SK (2010) Artificial microRNA and its applications. In: Bibekanand M, Zhumur G (eds) Regulatory RNAs: basics, methods and applications. Springer: Berlin, Heidelberg, Germany. pp 505–521

  • Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X (2011a) Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS ONE 6:e16928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011b) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7:e1002329

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zamir D, Eksteinmichelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zilian E, Maiss E (2011) An optimized Mrfp-based bimolecular fluorescence complementation system for the detection of protein-protein interactions in planta. J Virol Methods 174:158–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director, National Institute of Plant Genome Research (NIPGR), New Delhi, India for providing us the facilities. The authors’ works in this area are supported by the core grant of NIPGR. We thank Dr. Senthil-Kumar Muthappa, NIPGR for critically reading the manuscript. Ms. Namisha Sharma and Mr. Mehanathan Muthamilarasan acknowledge the award of Junior Research Fellowship from Department of Biotechnology, New Delhi and University Grants Commission, New Delhi, respectively.

Conflict of interest:

The authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, P.P., Sharma, N., Puranik, S. et al. Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 14, 47–58 (2014). https://doi.org/10.1007/s10142-013-0346-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0346-z

Keywords

Navigation