Skip to main content

Advertisement

Log in

Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abhary M, Patil BL, Fauquet CM (2007) Molecular biodiversity, taxonomy and nomenclature of Tomato yellow leaf curl-like viruses. In: Czosnek H (ed) The Tomato yellow leaf curl virus disease: management, molecular biology and breeding for resistance. Springer, Dordrecht, pp 85–118

    Chapter  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Behrens A, Sabapathy K, Graef I, Cleary M, Crabtree GR, Wagner EF (2001) Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc Natl Acad Sci USA 98:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    PubMed  CAS  Google Scholar 

  • Brigneti G, Martin-Hernández AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JDG (2004) Plant J 39:264–272

    Article  PubMed  CAS  Google Scholar 

  • Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44:513–542

    Article  CAS  Google Scholar 

  • Buttner M, Sauer N (2000) Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465:263–274

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (2000) Signal Transduction by the JNK Group of MAP Kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  • Davis KR, Schott E, Ausubel FM (1991) Virulence of selected phytopathogenic pseudomonads in Arabidopsis thaliana. Mol Plant Microbe Interact 4:477–488

    Article  CAS  Google Scholar 

  • Dibley SJ, Gear ML, Yang X, Rosche EG, Offler CE, McCurdy DW, Patrick JW (2005) Temporal and spatial expression of hexose transporters in developing tomato (Lycopersicon esculentum) fruit. Funct Plant Biol 32:777–785

    Article  CAS  Google Scholar 

  • Edelbaum D, Gorovits R, Sasaki S, Ikegami M, Czosnek H (2009) Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to Tomato yellow leaf curl virus (TYLCV) and Cucumber mosaic virus (CMV), but not to Grapevine virus A (GVA) and Tobacco mosaic virus (TMV). Arch Virol 154:399–407

    Article  PubMed  CAS  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H (2009) Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 71:157–171

    Article  PubMed  CAS  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  PubMed  CAS  Google Scholar 

  • Gear ML, McPhillips ML, Patrick JW, McCurdy DW (2000) Hexose transporters of tomato: molecular cloning, expression analysis and functional characterization. Plant Mol Biol 44:687–697

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Métraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

    Article  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector of molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • Gorovits R, Czosnek H (2008) Expression of stress-response proteins upon abiotic stress in tomato lines susceptible and resistant to Tomato yellow leaf curl virus. Plant Physiol Biochem 46:482–492

    Article  PubMed  CAS  Google Scholar 

  • Gorovits R, Akad F, Beery H, Vidavsky F, Mahadav A, Czosnek H (2007) Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus (TYLCV) in susceptible and resistant tomato plants. Mol Plant Microbe Interact 20:1376–1383

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  PubMed  CAS  Google Scholar 

  • Greenberg T, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena AHLAN, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Tsitsigiannis DI, Jones JDG, Mundy J (2007) Inducible cell death in plant immunity. Semin Cancer Biol 17:166–187

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) The Tomato yellow leaf curl virus disease: management, molecular biology and breeding for resistance. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • McConn J, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Moore BD, Sheen J (1999) Plant sugar sensing and signaling–a complex reality. Trends Plant Sci 4:250

    Article  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Niessen A, Ramirez B, Castano M (1990) Isolation and partial characterization of geminivirus causing bean dwarf mosaic. Phytopathology 80:96–101

    Article  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Murphy AM, Gilliland A, Wong CE, West J, Singh DP, Carr JP (2001) Signal transduction in resistance to plant viruses. Eur J Plant Pathol 107:121–128

    Article  CAS  Google Scholar 

  • Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic molecule. Virology 185:151–161

    Article  PubMed  CAS  Google Scholar 

  • Nørholm MH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA (2006) Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett 580:2381–2387

    Article  PubMed  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  PubMed  CAS  Google Scholar 

  • Rivas S, Rougon-Cardoso A, Smoker M, Schauser L, Yoshioka H, Jones JD (2000) CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defense. EMBO J 23:2156–2165

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    PubMed  CAS  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schofield RA, Bi Y-M, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ 32:271–285

    Article  PubMed  CAS  Google Scholar 

  • Shalitin D, Wang Y, Omid A, Gal-On A, Wolf S (2002) Cucumber mosaic virus movement protein affects sugar metabolism and transport in tobacco and melon plants. Plant Cell Environ 25:989–997

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  PubMed  Google Scholar 

  • Vidavski F (2007) Exploitation of resistance genes found in wild tomato species to produce resistant cultivars; pile up of resistance genes. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 363–372

    Chapter  Google Scholar 

  • Vidavski F, Czosnek H (1998) Tomato breeding lines immune and tolerant to Tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  Google Scholar 

  • Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, MarzluV WF, Jones AM (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell 17:4257–4269

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the US Agency for International Development, Middle East Research and Cooperation (MERC) program to H. C. (GEG-G-00-02-00003-00), Project M21-037. The authors thank Prof. David Baulcombe and the Gatsby Charitable Foundation, The Sainsbury Laboratory, for providing the TRV vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Czosnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eybishtz, A., Peretz, Y., Sade, D. et al. Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 231, 537–548 (2010). https://doi.org/10.1007/s00425-009-1072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1072-6

Keywords

Navigation