Skip to main content

Advertisement

Log in

Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A reverse-genetics approach was applied to identify genes involved in Tomato yellow leaf curl virus (TYLCV) resistance, taking advantage of two tomato inbred lines from the same breeding program—one susceptible (S), one resistant (R—that used Solanum habrochaites as the source of resistance. cDNA libraries from inoculated and non-inoculated R and S plants were compared, postulating that genes preferentially expressed in the R line may be part of the network sustaining resistance to TYLCV. Further, we assumed that silencing genes located at important nodes of the network would lead to collapse of resistance. Approximately 70 different cDNAs representing genes preferentially expressed in R plants were isolated and their genes identified by comparison with public databases. A Permease I-like protein gene encoding a transmembranal transporter was further studied: it was preferentially expressed in R plants and its expression was enhanced several-fold following TYLCV inoculation. Silencing of the Permease gene of R plants using Tobacco rattle virus-induced gene silencing led to loss of resistance, expressed as development of disease symptoms typical of infected susceptible plants and accumulation of large amounts of virus. Silencing of another membrane protein gene preferentially expressed in R plants, Pectin methylesterase, previously shown to be involved in Tobacco mosaic virus translocation, did not lead to collapse of resistance of R plants. Thus, silencing of a single gene can lead to collapse of resistance, but not every gene preferentially expressed in the R line has the same effect, upon silencing, on resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131:267–272

    CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato yellow leaf curl virus (TYLCV) resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Gen (in press)

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Benedito VA, Visser PB, Angenent GC, Krens FA (2004) The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genet Mol Res 3:323–341

    PubMed  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    PubMed  CAS  Google Scholar 

  • Brazhnik PA, de la Fuente PM, Mendes P (2002) Gene networks: how to put the function in genomics. Trends Biotechnol 20:467–472

    Article  PubMed  CAS  Google Scholar 

  • Briggs SP, Singer T (2005) Genetic networks. Plant Physiol 138:542–544

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith T, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  PubMed  CAS  Google Scholar 

  • Castillo AG, Collinet D, Deret S, Kashoggi A, Bejarano ER (2003) Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312:381–394

    Article  PubMed  CAS  Google Scholar 

  • Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol 78:2758–2769

    Article  PubMed  CAS  Google Scholar 

  • Chagué V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  PubMed  CAS  Google Scholar 

  • Chen M-H, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  PubMed  CAS  Google Scholar 

  • Chen M-H, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Culver JN, Padmanabhan MS (2007) Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol 45:221–243

    Article  PubMed  CAS  Google Scholar 

  • Czosnek H (2007) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht

    Book  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4:309–314

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov YL, Makinen KM, Frolova OY, Merits A, Kalkkinen N, Saarinen J, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov YL, Frolova OY, Skurat EV, Ivanov PA, Gasanova TV, Sheveleva AS, Ravin NV, Makinen K, Klimyuk V, Skryabin KG, Gleba YY, Atabekov JG (2006) A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing. FEBS Lett 580:3872–3878

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Fondong VN, Reddy CRV, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F (2007) The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol Plant Microbe Interact 20:380–391

    Article  PubMed  CAS  Google Scholar 

  • Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hortic Sci 123:1004–1007

    Google Scholar 

  • Gavin A-C, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Métraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

    Article  PubMed  Google Scholar 

  • Gilliland A, Murphy AM, Wong CE, Carson RAJ, Carr JP (2006) Mechanisms involved in induced resistance to plant viruses. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, Dordrecht, pp 335–359

    Chapter  Google Scholar 

  • Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • Gorovits R, Czosnek H (2007) Biotic and abiotic stress responses in breeding tomato lines resistant and susceptible to Tomato yellow leaf curl virus. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology and breeding for resistance. Springer, Dordrecht, pp 223–237

    Chapter  Google Scholar 

  • Gorovits R, Akad F, Beery H, Vidavski F, Mahadav A, Czosnek H (2007) Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus (TYLCV) in susceptible and resistant tomato plants. Mol Plant Microbe Interact 20:1376–1383

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn B (2007) The tomato yellow leaf curl virus: genome and function of its proteins. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology and breeding for resistance. Springer, Dordrecht, pp 67–84

    Chapter  Google Scholar 

  • Gutierrez C (2000) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Robertson D (2004) Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja S, Chen HM, Kuo G, Fang D, Chen JT (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 125:15–20

    CAS  Google Scholar 

  • Holeva R, Phillips MS, Neilson R, Brown DJF, Young V, Boutsika K, Blok VC (2006) Real-time PCR detection and quantification of vector trichodorid nematodes and Tobacco rattle virus. Mol Cell Probes 20:203–211

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology and breeding for resistance. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Scott JW, Maxwell DP (2009) Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Amer Soc Hort Sci 134:281–288

    Google Scholar 

  • Jonsson PF, Cavanna T, Zicha D, Bates PA (2006) Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis. BMC Bioinformatics 7:2

    Article  PubMed  Google Scholar 

  • Kang B-C, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Article  PubMed  CAS  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with retinoblastoma through a novel domain to determine symptoms and tissue-specificity of infection in plants. EMBO J 19:3485–3495

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V (2006) Nuclear import of plant viral proteins and genomes. Mol Plant Pathol 7:131–146

    Article  CAS  Google Scholar 

  • Krishnamoorthy S (2008) Receptor tyrosine kinase (RTK) mediated tyrosine phosphor-proteome from Drosophila S2 (ErbB1) cells reveals novel signaling networks. PLoS ONE 3:e2877

    Article  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40:181–188

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17:1614–1625

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR, Chory J (2000) Conservation and innovation in plant signaling pathways. Cell 103:201–209

    Article  PubMed  CAS  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  PubMed  CAS  Google Scholar 

  • Michelson I, Zeidan M, Zamski E, Zamir D, Czosnek H (1997) Localization of tomato yellow leaf curl virus (TYLCV) in susceptible and tolerant nearly isogenic tomato lines. Acta Hortic 447:407–414

    Google Scholar 

  • Miller S, Krijnse-Locker J (2008) Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6:363–374

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Murphy AM, Gilliland A, Wong CE, West J, Singh DP, Carr JP (2001) Signal transduction in resistance to plant viruses. Eur J Plant Pathol 107:121–128

    Article  CAS  Google Scholar 

  • Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic molecule. Virology 185:151–161

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky M, Cohen S (1990) Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis 74:248–250

    Article  Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  PubMed  CAS  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    Article  PubMed  CAS  Google Scholar 

  • Vidavski F (2007) Exploitation of resistance genes found in wild tomato species to produce resistant cultivars; pile up of resistance genes. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 363–372

    Chapter  Google Scholar 

  • Vidavski F, Czosnek H (1998) Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Article  Google Scholar 

  • Wellmer F, Riechmann JL (2005) Gene network analysis in plant development by genomic technologies. Int J Dev Biol 49:745–759

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarffati M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato Yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zeidan M, Czosnek H (1991) Acquisition of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci. J Genet Virol 72:2607–2614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the US Agency for International Development, Middle East Research and Cooperation (MERC) program to H C. (GEG-G-00-02-00003-00), Project M21-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Czosnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eybishtz, A., Peretz, Y., Sade, D. et al. Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 71, 157–171 (2009). https://doi.org/10.1007/s11103-009-9515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9515-9

Keywords

Navigation