Skip to main content
Log in

Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Phytophthora cinnamomi is a soil-borne plant pathogen that has caused widespread damage to vulnerable native ecosystems and agriculture systems across the world and shows no sign of abating. Management of the pathogen in the natural environment is difficult and the options are limited. In order to discover more about how resistant plants are able to defend themselves against this generalist pathogen, a microarray study of plant gene expression following root inoculation with P. cinnamomi was undertaken. Zea mays was used as a resistant model plant, and microarray analysis was conducted using the Affymetrix GeneChip Maize Genome Array on root samples collected at 6- and 24-h post-inoculation. Over 300 genes were differentially expressed in inoculated roots compared with controls across the two time points. Following Gene Ontology enrichment analysis and REVIGO visualisation of the up-regulated genes, many were implicated in plant defence responses to biotic stress. Genes that were up-regulated included those involved in phytoalexin biosynthesis and jasmonic acid/ethylene biosynthesis and other defence-related genes including those encoding glutathione S-transferases and serine-protease inhibitors. Of particular interest was the identification of the two most highly up-regulated genes, terpene synthase11 (Tps11) and kaurene synthase2 (An2), which are both involved in production of terpenoid phytoalexins. This is the first study that has investigated gene expression at a global level in roots in response to P. cinnamomi in a model plant species and provides valuable insights into the mechanisms involved in defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aberton MJ, Wilson BA, Cahill DM (2001) Development of disease caused by Phytophthora cinnamomi in mature Xanthorrhoea australis. Aust J Bot 49:209–219

    Article  Google Scholar 

  • Acosta-Muñiz CH, Escobar-Tovar L, Valdes-Rodríguez S, Fernández-Pavia S, Arias-Saucedo LJ, de las Cruz Espindola Barquera M, Lim MÁG (2011) Identification of avocado (Persea americana) root proteins induced by infection with the oomycete Phytophthora cinnamomi using a proteomic approach. Physiol Plant 144:59–72

    Article  PubMed  Google Scholar 

  • Allardyce JA, Rookes JE, Cahill DM (2012) Defining plant resistance to Phytophthora cinnamomi: a standardised approach to assessment. J Phytopathol 160:269–276

    Article  Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defences against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56

    Article  CAS  Google Scholar 

  • Aswati-Nair R, Kiran AG, Sivakumar KC, Thomas G (2010) Molecular characterisation of an oomycete-responsive PR-5 protein gene from Zingiber zurumbet. Plant Mol Biol Rep 28:128–135

    Article  Google Scholar 

  • Balci Y, Balci S, Eggers J, MacDonald WL, Juzwik J, Long RP, Gottschalk KW (2007) Phytophthora spp. associated with forest soils in eastern and north central U.S. oak ecosystems. Plant Dis 91:705–710

    Article  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckhart C, Aach J, Ansorge W, Ball CA, Causton HC et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature 29:365–371

    CAS  Google Scholar 

  • Byrt P, Grant BR (1979) Some conditions governing zoospore production in axenic cultures of Phytophthora cinnamomi Rands. Aust J Bot 27:103–115

    Article  Google Scholar 

  • Cahill DM, Grant B, Weste G (1986) Changes in cytokinin concentrations in xylem extrudate following infection of Eucalyptus marginata Donn ex Sm with Phytophthora cinnamomi Rands. Plant Physiol 81:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Cahill DM, Legge N, Grant B, Weste G (1989) Cellular and histological changes induced by Phytophthora cinnamomi in a group of plant species ranging from fully susceptible to fully resistant. Phytopathology 79:417–424

    Article  Google Scholar 

  • Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279–310

    Article  Google Scholar 

  • Christensen A, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjær MF, Dudler R, Schweizer P (2004) The germin-like protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant-Microbe Interact 17:109–117

    Article  PubMed  CAS  Google Scholar 

  • Dawson P, Weste G (1984) Impact of root infection by Phytophthora cinnamomi on the water relations of two Eucalyptus species that differ in susceptibility. Phytopathology 74:486–490

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Kühnemann JP, Sonnewald U, Kahmann R, Kämper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195

    Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:D354–D359

    Article  PubMed  CAS  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed  CAS  Google Scholar 

  • Dunstan WA, Rudman T, Shearer BL, Moore NA, Paap T, Calver MC, Dell B, Hardy GESJ (2010) Containment and spot eradication of a highly destructive, invasive plant pathogen (Phytophthora cinnamomi) in natural ecosystems. Biol Invasions 4:913–925

    Article  Google Scholar 

  • Environment Australia (2001) Threat abatement plan for dieback caused by the root-rot fungus (Phytophthora cinnamomi). Environment Australia, Canberra

  • Eshraghi L, Anderson J, Aryamanesh N, Shearer B, McComb J, Hardy GESJ, O’Brien PA (2011) Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathol 60:1086–1095

    Article  CAS  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Path 9:385–402

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Aparicio LG, Ibáňez B, Serrano MS, De Vita P, Ávila JM, Pérez-Ramos IM, Garcia LV, Sánchez ME, Maraňón T (2012) Spatial patterns of soil pathogens in declining Mediterranean forests: implications for tree species regeneration. New Phytol 194:1014–1024

    Article  PubMed  Google Scholar 

  • Gunning TK, Cahill DM (2009) A soil-free plant growth system to facilitate analysis of plant–pathogen interactions in roots. J Phytopathol 157:497–501

    Article  Google Scholar 

  • Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Path 5:589–604

    Article  Google Scholar 

  • Hardham AR, Cahill DM (2010) The role of oomycete effectors in plant pathogen interactions. Funct Plant Biol 37:919–925

    Article  CAS  Google Scholar 

  • Higo K, Ugawa IM, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    Article  PubMed  CAS  Google Scholar 

  • Hinch JM, Wetherbee R, Mallett JE, Clarke AE (1985) Response of Zea mays roots to infection with Phytophthora cinnamomi. Protoplasma 126:178–187

    Article  Google Scholar 

  • Horta M, Caetano P, Medeira C, Maia I, Cravador A (2010) Involvement of the β-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi. Eur J Plant Path 127:427–436

    Article  CAS  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalisation, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Kukavika B, Vučinić Ž, Vuletić M (2005) Superoxide dismutase, peroxidise, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226:191–197

    Article  Google Scholar 

  • Laidlaw WS, Wilson BA (2003) Floristic and structural characteristics of a coastal heathland exhibiting symptoms of Phytophthora cinnamomi infestation in the eastern Otway Ranges, Victoria. Aust J Bot 51:283–293

    Article  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397

    Article  PubMed  CAS  Google Scholar 

  • Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK (2010) Fight to the death: Arabidopsis thaliana defence response to fungal necrotrophic pathogens. Acta Physiol Plant 32:1–10

    Article  Google Scholar 

  • Liu J-J, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  PubMed  CAS  Google Scholar 

  • Mahomed W, van den Berg N (2011) EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi. BMC Plant Biol 11:167

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-tranferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistant response of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    PubMed  CAS  Google Scholar 

  • Mbaka JN, Wamocho LS, Turoop L, Waiganjo MM (2009) The incidence and distribution of Phytophthora cinnamomi Rands on macadamia in Kenya. J Anim Plant Sci 4:289–297

    Google Scholar 

  • Meier S, Gehring C (2008) A guide to the integrated application of on-line data mining tools for the inference of gene functions at the systems level. J Biotechnol 3:1375–1387

    Article  CAS  Google Scholar 

  • Membré N, Bernier F, Staiger D, Berner A (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211:345–354

    Article  PubMed  Google Scholar 

  • Nagle AM, Long RP, Madden LV, Bonello P (2010) Association of Phytophthora cinnamomi with White Oak Decline in Southern Ohio. Plant Dis 94:1026–1034

    Article  Google Scholar 

  • Nettleton D (2006) A discussion of statistical methods for design and analysis of microarray experiments for plant scientists. Plant Cell 18:2112–2121

    Article  PubMed  CAS  Google Scholar 

  • Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens: a molecular perspective. Plant Soil 274:215–226

    Article  CAS  Google Scholar 

  • Panjehkeh N, Backhouse D, Taji A (2010) Role of proanthocyanidins in resistance of the legume Swainsona formosa to Phytophthora cinnamomi. J Phytopathol 158:365–371

    Article  CAS  Google Scholar 

  • Rayner TF, Rocca-Serra P, Spellman PT, Causton HC, Farne A, Holloway E, Irezarry RA, Liu J, Maier DS, Miller M et al (2006) A simple spreadsheet-based MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinforma 7:489

    Article  Google Scholar 

  • Rookes JE, Wright ML, Cahill DM (2008) Elucidation of defence responses and signalling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi. Physiol Mol Plant P 72:151–161

    Article  CAS  Google Scholar 

  • Sánchez-Pérez JDL, Jaimes-Lara MG, Salgado-Garciglia R, López-Meza JE (2009) Root extracts from Mexican avocado (Persea americana var. drymifolia) inhibit the mycelial growth of the oomycete Phytophthora cinnamomi. Eur J Plant Pathol 124:595–601

    Article  Google Scholar 

  • Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey-Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68

    Article  PubMed  CAS  Google Scholar 

  • Schimoler-O’Rourke R, Richardson M, Selitrennikoff CP (2001) Zeamatin inhibits trypsin and α-amylase activities. Appl Environ Microb 67:2365–2366

    Article  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Shearer BL, Crane CE, Cochrane A (2004) Quantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomi. Aust J Bot 52:435–443

    Google Scholar 

  • Shen B, Zheng Z, Dooner HK (2000) A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterisation of wild-type and mutant alleles. Proc Natl Acad Sci USA 97:14807–14812

    Article  PubMed  CAS  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLoS One 6:e21800

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localisation of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene-, and abscisic acid-mediated defense signalling. Plant J 58:69–81

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signaling pathway. Plant Cell 14:S153–S164

    PubMed  CAS  Google Scholar 

  • Tyler BM (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Path 8:1–8

    Article  CAS  Google Scholar 

  • Van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur J Plant Pathol 111:169–180

    Article  Google Scholar 

  • Weste G, Marks GC (1987) The biology of Phytophthora cinnamomi in Australasian forests. Annu Rev Phytopathol 25:207–229

    Article  Google Scholar 

  • Wilson BA, Aberton J, Cahill DM (2000) Relationships between site factors and distribution of Phytophthora cinnamomi in the Eastern Otway Ranges, Victoria. Aust J Bot 48:247–260

    Article  Google Scholar 

  • Zentmyer G (1984) Avocado diseases. Trop Pest Manag 30:388–400

    Article  Google Scholar 

  • Zimmermann G, Bäumlein H, Mock H-P, Himmelbach H, Schweizer P (2006) The multigene family encoding germin-like proteins of barley: regulation and function in basal host resistance. Plant Physiol 142:181–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Australian Commonwealth Department of Sustainability, Environment, Water, Population and Communities for financial support and the Melbourne Node of the Australian Genome Research Facility for processing microarray data. We thank Dr. Michael Gardner and Ms Sharareh Kavkani, Deakin University, for assistance with bioinformatic analyses. MIAME-compliant data are deposited in GEO (www.ncbi.nlm.nih.gov/geo), accession number GSE27626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Miles Cahill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 104 kb)

High-resolution image (TIFF 21436 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(XLSX 134 kb)

ESM 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allardyce, J.A., Rookes, J.E., Hussain, H.I. et al. Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi . Funct Integr Genomics 13, 217–228 (2013). https://doi.org/10.1007/s10142-013-0314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0314-7

Keywords

Navigation