Skip to main content
Log in

PtDRG1, a Desiccation Response Gene from Pyropia tenera (Rhodophyta), Exhibits Chaperone Function and Enhances Abiotic Stress Tolerance

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Pyropia are commercially valuable marine red algae that grow in the intertidal zone. They are extremely tolerant to desiccation stress. We have previously identified and reported desiccation response genes (DRGs) based on transcriptome analysis of P. tenera. Among them, PtDRG1 encodes a polypeptide of 22.6 kDa that is located in the chloroplast. PtDRG1 does not share sequence homology with any known gene deposited in public database. Transcription of PtDRG1 gene was upregulated by osmotic stress induced by mannitol or H2O2 as well as desiccation stress, but not by heat. When PtDRG1 was overexpressed in Escherichia coli or Chlamydomonas, transformed cells grew much better than control cells under high temperature as well as osmotic stress induced by mannitol and NaCl. In addition, PtDRG1 significantly reduced thermal aggregation of substrate protein under heat stress condition. These results demonstrate that PtDRG1 has a chaperone function and plays a role in tolerance mechanism for abiotic stress. This study shows that red algae have unknown stress proteins such as PtDRG1 that contributes to stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93:13404–13409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  PubMed  CAS  Google Scholar 

  • Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang ZY, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci USA 114:E6361–E6370

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologist, Rockville, pp 1158–1203

    Google Scholar 

  • Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215:829–838

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Collen J, Guisle-Marsollier I, Leger JJ, Boyen C (2007) Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol 176:45–55

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62:1815–1829

    Article  PubMed  CAS  Google Scholar 

  • Demura M, Ioki M, Kawachi M, Nakajima N, Watanabe MM (2014) Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J Appl Phycol 26:49–53

    Article  PubMed  CAS  Google Scholar 

  • Finn TE, Nunez AC, Sunde M, Easterbrook-Smith SB (2012) Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J Biol Chem 287:21530–21540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses. Plant Growth Regul 24:185–191

    Article  CAS  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoud K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanism. Plant Signal Behav 6:1503–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Wang J, Simerly T, Hin W, Zhang H, Zhang Q (2015) Hydrogen peroxide released from Pyropia yezoensis induced by oligo-porphyrans: mechanisms and effect. J Appl Phycol 27:1639–1649

    Article  CAS  Google Scholar 

  • Hundertmark M, Hincha D (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Im S, Choi S, Hwang MS, Park EJ, Jeong WJ, Choi DW (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Appl Phycol 27:1343–1353

    Article  CAS  Google Scholar 

  • Im S, Lee HN, Jung HS, Yang S, Park EJ, Hwang MS, Jeong WJ, Choi DW (2017) Transcriptome based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar Biotechnol 19:232–245

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Yang S, Im S, Jeong WJ, Park EJ, Choi DW (2017) Overexpression of the small heat shock protein, PtsHSP19.3 from marine red algae, Pyropia tenera (Bangiales, Rhodophyta) enhances abiotic stress tolerance in Chlamydomonas. J Plant Biotechnol 44:287–295

    Article  Google Scholar 

  • Jung YJ, Melencion SM, Lee ES, Park JH, Alinapon CV, Oh HT, Yun DJ, Chi YH, Lee SY (2015) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6:1141

    PubMed  PubMed Central  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Lee HN, Kim SH, Han YJ, Im S, Jeong WJ, Park EJ, Hwang MS, Choi DW (2017) PsCYP1 of marine red alga, Pyropia seriata (Bangiales, Rhodophyta) confers salt and heat tolerance in Chlamydomonas. J Appl Phycol 29:617–625

    Article  CAS  Google Scholar 

  • Lin C, Thomashow M (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 peptide. Plant Physiol 99:519–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–208

    Article  PubMed  CAS  Google Scholar 

  • Marin-Menendez A, Monaghan P, Bell A (2012) A family of cyclophillin like molecular chaperones in Plasmodium falciparum. Mol Biochem Parasitol 184:44–47

    Article  PubMed  CAS  Google Scholar 

  • McLachlan J (1973) Growth media—marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge Univ Press, New York, pp 25–51

    Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:25–31

    Article  Google Scholar 

  • Qian F, Luo Q, Yang R, Zhu Z, Chen H, Yan X (2015) The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. J Appl Phycol 27:621–632

    Article  CAS  Google Scholar 

  • Reed RH, Collins JC, Russell G (1980) The effects of salinity upon galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth). C. Ag. J Exp Bot 31:1539–1554

    Article  CAS  Google Scholar 

  • Rodriguez MCS, Edsga D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J 3:212–228

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Mao Y, Kong F, Cao M, Sun P (2015) Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology. BMC Genomics 16:1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by Korean Institute of Planning and Evaluation for Technology, Agriculture, Forestry and Fisheries (IPET) through Golden Seed Project (Project number, 213008-05-2-SB830) funded by the Ministry of Oceans and Fisheries (MOF), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woog Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Fig. 1

Chaperone activity of PtDRG1 at various concentrations. Chaperone function of PtDRG1 was examined using alcohol dehydrogenase (ADH) as a substrate. To induce aggregation, ADH was heated to 55 °C. Thermal aggregation of ADH was determined by monitoring the turbidity at A360 for 50 min in the presence of various concentrations of PtDRG1 protein (0.1–5 mg/ml). Standard deviations (vertical bar) were calculated from data obtained from three replicate experiments. (PPTX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Y., Lee, HN., Wi, J. et al. PtDRG1, a Desiccation Response Gene from Pyropia tenera (Rhodophyta), Exhibits Chaperone Function and Enhances Abiotic Stress Tolerance. Mar Biotechnol 20, 584–593 (2018). https://doi.org/10.1007/s10126-018-9828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9828-2

Keywords

Navigation