Skip to main content
Log in

PsCYP1 of marine red alga Pyropia seriata (Bangiales, Rhodophyta) confers salt and heat tolerance in Chlamydomonas

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyclophilins (CYPs) are ubiquitous in all subcellular compartments, possess peptidyl-prolyl cis-trans isomerase (PPIase) activity and are present in prokaryotes and eukaryotes. Their physiological functions are various such as protein folding, symbiotic relationships, disease or plant responses to abiotic stresses. Pyropia seriata (Bangiales, Rhodophyta) is a marine red alga that is cultivated as commercially valuable seaweed. By analyzing transcriptome data, we identified six full coding sequences of CYPs from P. seriata. Among them, only PsCYP1 showed upregulation of transcription in responded to high temperature stress. PsCYP1 belongs to the single domain form of cytosolic cyclophilin and contains the typical 12 conserved amino acid residues for PPIase activity. Despite no detected nuclear localization signal (NLS), a chimeric PsCYP1 protein with green fluorescent protein (GFP) was detected predominantly in nucleus. When PsCYP1 was introduced into the green alga, Chlamydomonas, the introduced PsCYP1 conferred salt and heat stress tolerance in transgenic Chlamydomonas. Especially the transgenic Chlamydomonas cells exhibited a salt-tolerant phenotype. The cyclophilin genes from P. seriata will facilitate future studies of the molecular function of cyclophilin, and the mechanisms of abiotic stress tolerance in red algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS (2010) Classification of rice (Oryza sativa I. japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Wang G, Qu Z, Lu C, Liu N, Wang F, Xia G (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Lee YK, Hong CB (2005) A cyclophilin from Griffithsia japonica has thermoprotective activity and is affected by CsA. Mol Cells 20:142–150

    CAS  PubMed  Google Scholar 

  • Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S (2008) A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci U S A 105:16386–16391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Im S, Choi S, Hwang MS, Park EJ, Jeong WJ, Choi DW (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Appl Phycol 27:1343–1353

    Article  CAS  Google Scholar 

  • Jia ZJ, Niu JF, Huan L, Wu XJ, Wang GC, Hou ZJ (2013) Cyclophilin participates in responding to stress situations in Porphyra haitanensis (Bangiales, Rhodophyta). J Phycol 49:194–201

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Park HS, Jung YJ, Jeong WJ, Park HS, Hwang MS, Park EJ, Gong YG, Choi DW (2011) Identification of the high-temperature response genes from Porphyra seriata (Rhodophyta) ESTs and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene. J Phycol 47:821–828

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, You YN, Park JC, Joung Y, Kim BG, Ahn JC, Cho HS (2012) The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Rep 31:417–426

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A (2013) Cyclophilins: proteins in search of function. Plant Signal Behav 8:e22734

    Article  PubMed  Google Scholar 

  • Lavy M, Prigge MJ, Tigyi K, Estelle M (2012) The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. Development 139:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laxa M, Konig J, Dietz KJ, Kandlbinder A (2007) Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. Biochem J 401:287–297

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Song L, Yang Y, Liu D (2013) A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. New Phytol 197:751–762

  • Mahalakshmi S, Christopher GS, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359

    Article  CAS  PubMed  Google Scholar 

  • Mainali HR, Chapman P, Dhaubhadel S (2014) Genome-wide analysis of cyclophilin gene family in soybean (Glycine max). BMC Plant Biol 14:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, et al. (2013) The first symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis). PLoS One 8:e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropicagene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Jeong WJ, Kim E, Jung Y, Lim JM, Hwang MS, Park EJ, Ha DS, Choi DW (2012) Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar Biotech 14:332–342

    Article  CAS  Google Scholar 

  • Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, et al. (2013) Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc Natl Acad Sci U S A 110:9559–9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano PG, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo D, Tang XR, Yarish C (2002) Porphyra—the economic seaweed as a new experimental system. Curr Sci India 83:1313–1316

    Google Scholar 

  • Sekhar K, Priyanka N, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ 33:1324–1338

    CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Trupkin SA, Mora-Garcia S, Casal JJ (2012) The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity. Plant J 71:712–723

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K (2015) Plant immunophilins: a review of their structure-function relationship. Biochim Biophys Acta 1850:2145–2158

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocol 2:1565–1572

    Article  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Wang Y, Li Y, Bhatti KH, Tian Y, Wu J (2011) Over expression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem 49:1264–1271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Chonnam National University (2013), and the Golden Seed Project, Ministry of Agriculture, Food, and Rural Affairs (MAFRA), the Ministry of Oceans and Fisheries (MOF), the Rural Development Administration (RDA), and the Korea Forest Service (KFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woog Choi.

Electronic supplementary material

Supplementary Fig. 1

a Vector map of PsCYP1 expression in Chlamydomonas reinhardtii. b RT-PCR result for the PsCYP1 expression in transgenic Chlamydomonas and control cell (Hyg). Chlamydomonas reinhardtii harboring the empty vector, pCr112 vector (Hyg), were used as control cells. To check PsCYP1 expression, total RNAs were purified from the transgenic Chlamydomonas and control cell. RT-PCR was performed with PsCYP1 gene-specific primer. The Chlamydomonas actin gene (CrActin) was used as the internal control. (PPTX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HN., Kim, S.H., Han, YJ. et al. PsCYP1 of marine red alga Pyropia seriata (Bangiales, Rhodophyta) confers salt and heat tolerance in Chlamydomonas . J Appl Phycol 29, 617–625 (2017). https://doi.org/10.1007/s10811-016-0934-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0934-0

Keywords

Navigation