Skip to main content
Log in

Linkage Mapping of Toll-Like Receptors (TLRs) in Japanese Flounder, Paralichthys olivaceus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are responsible for the recognition of specific pathogen-associated molecular patterns and consequently activate signal pathways leading to inflammatory and interferon responses. The region surrounding several TLRs was previously found to be associated with resistance to specific disease. Hence, we determined the location of 11 TLRs in Japanese flounder (Paralichthys olivaceus) using polymorphic microsatellite markers. TLR1 and TLR3 were located on linkage group (LG) 21 and 7, respectively. Membrane TLR5 and soluble TLR5 were mapped to LG22. TLR7 and TLR8 were mapped to LG3. TLR9 was found on LG1 and TLR14 and TLR21 were located on the same linkage group, LG10. TLR22 was found on LG8. Interestingly, TLR2 was mapped with the previously reported Poli9-8TUF microsatellite marker which is tightly associated with lymphocystis virus disease resistance. Therefore, TLR2 is a candidate gene for resistance to lymphocystis disease. These results imply that the location of a TLR associated with a particular disease may be valuable for the research on the relationship between host immune response and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  • Aravalli RN, Hu SX, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193

    PubMed  CAS  Google Scholar 

  • Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533

    Article  PubMed  CAS  Google Scholar 

  • Castaño-Sánchez C, Fuji K, Ozaki A, Hasegawa O, Sakamoto T, Morishima K, Nakayama I, Fujiwara A, Okamoto H, Hayashida K, Tagami M, Kawai J, Hayashizaki Y, Okamoto N (2010) A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus). BMC Genomics 11:554

    Article  PubMed  Google Scholar 

  • Chistiakov DA, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS, Kotoulas G, Bertotto D, Libertini A, Volckaert FA (2005) A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170:1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E, Ozaki A, Sakamoto T, Naruse K, Okamoto N (2003) A genetic linkage map of Japanese flounder, Paralichthys olivaceus. Aquaculture 220:203–218

    Article  CAS  Google Scholar 

  • Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11:362–371

    PubMed  CAS  Google Scholar 

  • Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Sakamoto T, Okamoto N (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254:203–210

    Article  CAS  Google Scholar 

  • Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N (2007) Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272:291–295

    Article  Google Scholar 

  • Hirono I, Takami M, Miyata M, Miyazaki T, Han HJ, Takano T, Endo M, Aoki T (2004) Characterization of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichthys olivaceus. Immunogenetics 56:38–46

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Bumstead N, Barrow P, Sebastiani G, Olien L, Morgan K, Malo D (1997) Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res 7:693–704

    PubMed  CAS  Google Scholar 

  • Hwang SD, Asahi T, Kondo H, Hirono I, Aoki T (2010a) Molecular cloning and expression study on Toll-like receptor 5 paralogs in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 29:630–638

    Article  PubMed  CAS  Google Scholar 

  • Hwang SD, Kondo H, Hirono I, Aoki T (2010b) Molecular cloning and characterization of Toll-like receptor 14 in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 30:425–429

    Article  PubMed  Google Scholar 

  • Jaari S, Li MH, Merilä J (2009) A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insight into avian genome evolution. BMC Genomics 10:1

    Article  PubMed  Google Scholar 

  • Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  PubMed  CAS  Google Scholar 

  • Johnson NA, Vallejo RL, Silverstein JT, Welch TJ, Wiens GD, Hallerman EM, Palti Y (2008) Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 10:429–437

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Asakawa S, Hirono I, Aoki T, Shimizu N (2000) Genomic bacterial artificial chromosome library of the Japanese flounder, Paralichthys olivaceus. Mar Biotechnol 2:571–576

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–1232

    PubMed  CAS  Google Scholar 

  • Koshimizu E, Strüssmann CA, Okamoto N, Fukuda H, Sakamoto T (2010) Construction of a genetic map and development of DNA markers linked to the sex-determining locus in the Patagonian pejerrey (Odontesthes hatcheri). Mar Biotechnol 12:8–13

    Article  PubMed  CAS  Google Scholar 

  • Lallias D, Gomez-Raya L, Haley CS, Arzul I, Heurtebise S, Beaumont AR, Boudry P, Lapègue S (2009) Combining two-stage testing and interval mapping strategies to detect QTL for resistance to bonamiosis in the European flat oyster Ostrea edulis. Mar Biotechnol 11:570–584

    Article  PubMed  CAS  Google Scholar 

  • Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD (2005) A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–244

    Article  PubMed  CAS  Google Scholar 

  • Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, Loredo-Osti JC, Morgan K, Malo D (2003) Allelic variation in TLR4 is linked susceptibility to Salmonella enteric serovar Typhimurium infection in chickens. Infect Immun 71:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Li L, Guo X (2004) AFLP-based genetic linkage maps of the pacific oyster Crassostrea gigas Thunberg. Mar Biotechnol 6:26–36

    Article  PubMed  CAS  Google Scholar 

  • Liao X, Ma HY, Xu GB, Shao CW, Tian YS, Ji XS, Yang JF, Chen SL (2009) Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol 11:699–709

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Karsi A, Li P, Cao D, Dunham R (2003) An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165:687–694

    PubMed  CAS  Google Scholar 

  • Liu X, Liu X, Guo X, Gao Q, Zhao H, Zhang G (2006) A preliminary genetic linkage map of the Pacific abalone Haliotis discus hannai Ino. Mar Biotechnol 8:386–397

    Article  PubMed  Google Scholar 

  • Liu F, Shao Z, Zhang H, Liu J, Wang X, Duan D (2010) QTL mapping for frond length and width in Laminaria japonica aresch (Laminarales, Phaeophyta) using AFLP and SSR markers. Mar Biotechnol 12:386–394

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to Map Manager Qt. Mamm Genome 10:327–334

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK, Beynon C, Leamon J, Skibinski DO (2000) Microsatellite marker based genetic linkage maps of Oreochromis aureus and O. niloticus (Cichlidae): extensive linkage group segment homologies revealed. Anim Genet 31:214–218

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Meehan D, Xu Z, Zuniga G, Alcivar-Warren A (2003) High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei [Crustacea:Decapoda]. Mar Biotechnol 5:311–330

    Article  PubMed  CAS  Google Scholar 

  • Morrison LA (2004) The Toll of herpes simplex virus infection. Trends Microbiol 12:353–356

    Article  PubMed  CAS  Google Scholar 

  • Oshiumi H, Tsujita T, Shida K, Matsumoto M, Ikeo K, Seya T (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54:791–800

    PubMed  CAS  Google Scholar 

  • Palti Y, Rodriguez MF, Vallejo RL, Rexroad CE III (2006) Mapping of Toll-like receptor genes in rainbow trout. Anim Genet 37:597–598

    Article  PubMed  CAS  Google Scholar 

  • Palti Y, Gahr SA, Purcell MK, Hadidi S, Rexroad CE III, Wiens GD (2010a) Identification, characterization and genetic mapping of TLR7, TLR8a1 and TLR8a2 genes in rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 34:219–233

    Article  PubMed  CAS  Google Scholar 

  • Palti Y, Rodriguez MF, Gahr SA, Purcell MK, Rexroad CE III, Wiens GD (2010b) Identification, characterization and genetic mapping of TLR1 loci in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 28:918–926

    Article  PubMed  CAS  Google Scholar 

  • Rebl A, Siegl E, Köllner B, Fischer U, Seyfert HM (2007) Characterization of twin toll-like receptors from rainbow trout (Oncorhynchus mykiss): evolutionary relationship and induced expression by Aeromonas salmonicida salmonicida. Dev Comp Immunol 31:499–510

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345

    PubMed  CAS  Google Scholar 

  • Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P, Malo D (1998) Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics 47:180–186

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani G, Leveque G, Larivierè L, Laroche L, Skamene E, Gros P, Malo D (2000) Cloning and characterization of the murine Toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 64:230–240

    Article  PubMed  CAS  Google Scholar 

  • Sekino M, Kobayashi T, Hara M (2006) Segregation and linkage analysis of 75 novel microsatellite DNA markers in pair crosses of Japanese abalone (Haliotis discus hannai) using the 5′-tailed primer method. Mar Biotechnol 8:453–466

    Article  PubMed  CAS  Google Scholar 

  • Sørensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR (2008) TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol 181:8604–8612

    PubMed  Google Scholar 

  • Takano T, Kondo H, Hirono I, Endo M, Saito-Taki T, Aoki T (2007) Molecular cloning and characterization of Toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus. Mol Immunol 44:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Hwang SD, Kondo H, Hirono I, Aoki T, Sano M (2010) Evidence of molecular Toll-like receptor mechanisms in teleosts. Fish Pathol 45:1–16

    Article  Google Scholar 

  • Takeda K, Kasho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  • Tsoi S, Park KC, Kay HH, O’Brien TJ, Podor E, Sun G, Douglas SE, Brown LL, Johnson SC (2006) Identification of a transcript encoding a soluble form of toll-like receptor 5 (TLR5) in Atlantic salmon during Aeromonas salmonicida infection. Vet Immunol Immunopathol 109:183–187

    Article  PubMed  CAS  Google Scholar 

  • Tsujita T, Tsukada H, Nakao M, Oshiumi H, Matsumoto M, Seya T (2004) Sensing bacterial flagellin by membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Oncorhynchus mykiss). J Biol Chem 279:48588–48597

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR (2001) A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158:727–734

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S.D., Fuji, K., Takano, T. et al. Linkage Mapping of Toll-Like Receptors (TLRs) in Japanese Flounder, Paralichthys olivaceus . Mar Biotechnol 13, 1086–1091 (2011). https://doi.org/10.1007/s10126-011-9371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9371-x

Keywords

Navigation