Skip to main content
Log in

QTL Mapping for Frond Length and Width in Laminaria japonica Aresch (Laminarales, Phaeophyta) Using AFLP and SSR Markers

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe J, Tsuda C (1988) Distorted segregation in the backcross progenies between Beta vulgaris L. and B. macrocarpa Guss. Japan J Breed 38:309–318

    Google Scholar 

  • Abe K (1939) Mitosen in sporangium von Laminaria japonica Aresch. Sci Rep Tohoku Imp Univ 14:327–329

    Google Scholar 

  • Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5:202–212

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Tefera H, Ayele M, Nguyen HT (1999) A genetic linkage map of tef (Eragrostis tef (Zucc.) Trotter) based on amplified fragment length polymorphism. Theor Appl Genet 99:599–604

    Article  CAS  Google Scholar 

  • Edwards KJ, Barker JH, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Bio Techniques 20:758–760

    CAS  Google Scholar 

  • Fang TC, Jiang BY, Li JJ (1965) Further studies of the genetics of Laminiaria frond-length. Oceanologia Et Limnologia Sinica 65(1):59–66

    Google Scholar 

  • Feng L, Tang XX, Zhang Y (2005) The advancement on breeding and seed-rearing technology in kelp. Sci Tech Engng 5(8):491–495 (in Chinese with English abstract)

    Google Scholar 

  • Gebhardt C, Ritter E, Barone A et al (1991) RFLP maps of potato and their alignment with the homologous tomato genome. Theor Appl Genet 83:49–57

    Article  Google Scholar 

  • Jung G, Coyne DP, Skroch PW et al (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Amer Soc Hort Sci 1996(121):794–803

    Google Scholar 

  • Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    Article  Google Scholar 

  • Korol A, Shirak A, Cnaani A, Hallerman EM (2007) Detection and analysis of quantitative trait loci (QTL) for economic traits in aquatic species. In: Liu Z (ed) Aquaculture genome technologies. Blackwell, Oxford, pp 169–197

    Chapter  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ, Jiang BY, Neushul M, Fei XG (1993) Haploid parthenogenetic sporophytes of Laminaria japonica (Phaeophyceae). J Phycol 29:363–369

    Article  Google Scholar 

  • Li XJ, Cong YZ, Yang GP, Shi YY et al (2007a) Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica. J Appl Phycol 19:139–151

    Article  PubMed  Google Scholar 

  • Li YH, Yang YX, Liu JD, Wang XL, Gao TX, Duan DL (2007b) Genetic mapping of Laminaria japonica and L. lentissimo using amplified fragment length polymorphism markers in a “two-way pseudo-testcross” strategy. J Integr Plant Biol 49:392–400

    Article  CAS  Google Scholar 

  • Lima M, Souza C, Bento D, Souza A, Carlini-Garcia L (2006) Mapping QTL for grain yielding and plant traits in a tropical maize. Mol Breed 17(3):227–239

    Article  Google Scholar 

  • Liu FL, Wang XL, Yao JT, Fu WD, Duan DL (2009) Development of expressed sequence tag-derived microsatellite markers for Laminaria Japonica Aresch. J Appl Phycol. doi:10.1007/s10811-009-9426-9

    Google Scholar 

  • Lu ZX, Sisinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP loci linked to root-knot nematodes in peach rootstocks. Genome 41:199–207

    Article  CAS  Google Scholar 

  • Mohan M, Nair S, Bhagwat A et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breeding 3:87–103

    Article  CAS  Google Scholar 

  • Murigneux A, Baud S, Beckert M (1993) Molecular and morphological evaluation of doubled-haploid lines in maize. 2. Comparison with single-seed-descent lines. Theor Appl Genet 87:278–287

    Article  Google Scholar 

  • Postlethwait JH, Johnson SL, Midson CN et al (1994) A genetic linkage map for the zebrafish. Science 264:699–703

    Article  CAS  PubMed  Google Scholar 

  • Shi YY, Yang GP, Liu YJ (2007) Development of 18 polymorphic microsatellite DNA markers of Laminaria japonica (Phaeophyceae). Mol Ecol Notes 7:620–622

    Article  CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular-markerfacilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Google Scholar 

  • Tseng CK (1983) Common seaweeds of china. Science, Beijng, p 206

    Google Scholar 

  • Ulloa M, Meredith WR, Shappley ZE et al (2002) RFLP genetic linkage maps from four F (2.3) populations and a joinmap of Gossy pium hirsutun L. Theor Appl Genet 104:200–208

    Article  CAS  PubMed  Google Scholar 

  • Voorips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wang QY (1984) A study of the heritability and genotypic correlation of some economic characters of L. japonica Aresch. Journal of Shangdong College of Oceanology 14:65–76

    Google Scholar 

  • Wang SC, Basten CJ, Zeng ZB (2003) Program in statistical genetics. North Carolina State University, Raleigh WinqtlCart Version 2.0

    Google Scholar 

  • Wang XL, Yang YX, Cong YZ, Duan DL (2004) DNA fingerprinting of selected Laminaria (Phaeophta) gametophytes by RAPD markers. Aquaculture 238:143–153

    Article  CAS  Google Scholar 

  • Wang XL, Liu CL, Li XJ, Cong YZ, Duan DL (2005) Assessment of genetic diversities of selected Laminaria (Laminarales, Phaeophta) gametophytes by inter-simple sequence repeat analysis. J Integr Plant Biol 47:753–758

    Article  CAS  Google Scholar 

  • Wu CY, Lin GH (1987) Progress in the genetics and breeding of economic seaweeds in China. Hydrobiologia 151(152):57–61

    Google Scholar 

  • Yabu H (1973) Alternation of chromosome in the life history of Laminaria japonica Aresch. Bull Fac Fish Hokkaido Univ 23:171–176

    Google Scholar 

  • Yabu H, Yasui H (1991) Chromosome number in four species of Laminaria (Phaeophyta). Jap J Phycol 39:185–187

    Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilization: An end-of-century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang QS, Liu SP, Qu SC, Tian ZP et al (2001) Studies on rearing new variety of kelp “901”. Transactions of Oceanology and Limnology 2:46–53

    Google Scholar 

  • Zhou LR, Dai JX, Shen SD (2004) An improved chromosome preparation from male gametophyte of Laminaria japonica (Heterokontophyta). Hydrobiologia 512:141–144

    Article  Google Scholar 

Download references

Acknowledgement

The authors want to thank Donald Sturge for the English revision of the manuscript and also acknowledge the significant contributions of the anonymous reviewers. This research was supported by Key Lab of Marine Bioactive Substances, State Oceanography Administration, and funded by Natural Science Foundation of China No. 30500383 to X. L. Wang, and Knowledge innovation program (KSCXZ-YW-N-47-02) of Chinese Academy of Sciences and Shandong Agricultural Seed Stock Breeding Project granted to D. L. Duan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuliang Wang or Delin Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Shao, Z., Zhang, H. et al. QTL Mapping for Frond Length and Width in Laminaria japonica Aresch (Laminarales, Phaeophyta) Using AFLP and SSR Markers. Mar Biotechnol 12, 386–394 (2010). https://doi.org/10.1007/s10126-009-9229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9229-7

Keywords

Navigation