Skip to main content
Log in

An Expressed Sequence Tag Analysis of the Intertidal Brown Seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in Response to Abiotic Stressors

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In order to aid gene discovery and uncover genes responding to abiotic stressors in stress-tolerant brown algae of the genus Fucus, expressed sequence tags (ESTs) were studied in two species, Fucus serratus and Fucus vesiculosus. Clustering of over 12,000 ESTs from three libraries for heat shock/recovery and desiccation/rehydration resulted in identification of 2,503, 1,290, and 2,409 unigenes from heat-shocked F. serratus, desiccated F. serratus, and desiccated F. vesiculosus, respectively. Low overall annotation rates (18–31%) were strongly associated with the presence of long 3′ untranslated regions in Fucus transcripts, as shown by analyses of predicted protein-coding sequence in annotated and nonannotated tentative consensus sequences. Posttranslational modification genes were overrepresented in the heat shock/recovery library, including many chaperones, the most abundant of which were a family of small heat shock protein transcripts, Hsp90 and Hsp70 members. Transcripts of LI818-like light-harvesting genes implicated in photoprotection were also expressed during heat shock in high light. The expression of several heat-shock-responsive genes was confirmed by quantitative reverse transcription polymerase chain reaction. However, candidate genes were notably absent from both desiccation/rehydration libraries, while the responses of the two species to desiccation were divergent, perhaps reflecting the species-specific physiological differences in stress tolerance previously established. Desiccation-tolerant F. vesiculosus overexpressed at least 17 ribosomal protein genes and two ubiquitin-ribosomal protein fusion genes, suggesting that ribosome function and/or biogenesis are important during cycles of rapid desiccation and rehydration in the intertidal zone and possibly indicate parallels with other poikilohydric organisms such as desiccation-tolerant bryophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apt KE, Clendennen SK, Powers DA, Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246:455–464

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie J-M (1997) The significance of digital gene expression profiles. Genome Res 7:989–995

    Google Scholar 

  • Bagniewska-Zadworna A (2008) The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. Protoplasma 233:177–185

    Article  PubMed  Google Scholar 

  • Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  CAS  Google Scholar 

  • Becker F, Rhiel E (2006) Immuno-electronmicroscopic quantification of the fucoxanthin chlorophyll a/c binding polypeptides Fcp2, Fcp4, and Fcp6 of Cyclotella cryptica grown under low- and high-light intensities. Int Microbiol 9:29–36

    CAS  PubMed  Google Scholar 

  • Billard E, Daguin C, Pearson G, Serrão E, Engel C, Valero M (2005a) Genetic isolation between three closely related taxa: Fucus vesiculosus, F. spiralis, and F. ceranoides (Phaeophyceae). J Phycol 41:900–905

    Article  Google Scholar 

  • Billard E, Serrão EA, Pearson GA, Engel CR, Destombe C, Valero M (2005b) Analysis of sexual phenotype and prezygotic fertility in natural populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and their putative hybrids. Eur J Phycol 40:397–407

    Article  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq M-PO-L, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106

    Article  CAS  PubMed  Google Scholar 

  • Chapman ARO (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34:1–32

    Google Scholar 

  • Collén J, Davison IR (1999a) Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). J Phycol 35:62–69

    Article  Google Scholar 

  • Collén J, Davison IR (1999b) Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J Phycol 35:54–61

    Article  Google Scholar 

  • Collén J, Roeder V, Rousvoal S, Collin O, Kloareg B, Boyen C (2006) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J Phycol 42:104–112

    Article  Google Scholar 

  • Coyer JA, Peters AF, Hoarau G, Stam WT, Olsen JL (2002a) Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc R Soc Lond B 269:1829–1834

    Article  CAS  Google Scholar 

  • Coyer JA, Peters AF, Hoarau G, Stam WT, Olsen JL (2002b) Inheritance patterns of ITS1, chloroplasts and mitochondria in artificial hybrids of the seaweeds Fucus serratus and F. evanescens (Phaeophyceae). Eur J Phycol 37:173–178

    Article  Google Scholar 

  • Coyer JA, Peters AF, Stam WT, Olsen JL (2003) Post-Ice Age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in Northern Europe. Mol Ecol 12:1817–1829

    Article  CAS  PubMed  Google Scholar 

  • Coyer JA, Hoarau G, Oudot-Le Secq M-P, Stam WT, Olsen JL (2006) A mtDNA-based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta). Mol Phylogen Evol 39:209–222

    Article  CAS  Google Scholar 

  • Coyer JA, Hoarau G, Beszteri B, Pearson GA, Olsen JL (2008) Expressed sequence tag-derived polymorphic SSR markers for Fucus serratus and amplification in other species of Fucus. Mol Ecol Res . doi:10.1111/j.1755-0998.2008.02406.x

    Google Scholar 

  • Crépineau F, Roscoe T, Kaas R, Kloareg B, Boyen C (2000) Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant Mol Biol 43:503–513

    Article  PubMed  Google Scholar 

  • Crow JA, Retzel EF (2005) Diogenes—reliable prediction of protein-encoding regions in short genomic sequences. http://analysisccgbumnedu/diogenes

  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Prot Eng 10:673–676

    Article  CAS  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Dring MJ, Brown FA (1982) Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar Ecol Prog Ser 8:301–308

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Engel CR, Daguin C, Serrão EA (2005) Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14:2033–2046

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien M-A (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa APP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, van Sluys MA, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogen Genome Res 110:229–241

    Article  CAS  Google Scholar 

  • Grantham J, Ruddock LW, Roobol A, Carden MJ (2002) Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones 7:235–242

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Henley WJ, Lindley ST, Levavasseur G, Osmond CB, Ramus J (1992) Photosynthetic response of Ulva rotundata to light and temperature during emersion on an intertidal sand flat. Oecologia 89:516–523

    Google Scholar 

  • Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL (2007) Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol 16:3606–3616

    Article  CAS  PubMed  Google Scholar 

  • Koziol AG, Borza T, Ishida K-I, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143:1802–1816

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Lipkin Y, Beer S, Eshel A (1993) The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot Mar 36:517–523

    Article  Google Scholar 

  • Llorca O, Martín-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 19:5971–5979

    Article  CAS  PubMed  Google Scholar 

  • Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89

    Article  PubMed  Google Scholar 

  • O’Mahony PJ, Oliver MJ (1999) The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol Biol 41:657–667

    Article  PubMed  Google Scholar 

  • Pearson GA, Davison IR (1993) Freezing rate and duration determine the physiological response of intertidal fucoids to freezing. Mar Biol 115:353–362

    Article  Google Scholar 

  • Pearson GA, Davison IR (1994) Freezing stress and osmotic dehydration in Fucus distichus (Phaeophyta): evidence for physiological similarity. J Phycol 30:257–267

    Article  CAS  Google Scholar 

  • Pearson GA, Kautsky L, Serrão E (2000) Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Mar Ecol Prog Ser 202:67–79

    Article  Google Scholar 

  • Pearson GA, Lago-Leston A, Valente M, Serrão EA (2006) Simple and rapid RNA extraction from freeze-dried tissue of brown algae and sea grasses. Eur J Phycol 41:97–104

    Article  CAS  Google Scholar 

  • Pearson GA, Lago-Leston A, Mota C (2009) Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J Ecol 97:450–462

    Article  Google Scholar 

  • Peers G, Truong T, Elrad D, Grossman A, Niyogi K (2007) A non-photochemical quenching mutant of Chlamydomonas reveals a role for L1818/LHCSR proteins. Photosynth Res 91:250

    Google Scholar 

  • Perrin C, Daguin C, De Vliet M, Engel CR, Pearson GA, Serrão EA (2007) Implications of mating system for genetic diversity of sister algal species: Fucus spiralis and Fucus vesiculosus (Heterokontophyta, Phaeophyceae). Eur J Phycol 42:219–230

    Article  CAS  Google Scholar 

  • Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus as a model organism for brown algal genetics and genomics. J Phycol 40:1079–1088

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Ramallo E, Kalendar R, Schulman A, Martínez-Izquierdo J (2008) Reme1, a copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66:137–150

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Ouellet H, Guertin M (2000) Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 42:303–316

    Article  CAS  PubMed  Google Scholar 

  • Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235

    Article  CAS  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162

    CAS  PubMed  Google Scholar 

  • Schonbeck MW, Norton TA (1978) Factors controlling the upper limits of fucoid algae on the shore. J Exp Mar Biol Ecol 31:303–313

    Article  Google Scholar 

  • Serrão EA, Alice LA, Brawley SH (1999) Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J Phycol 35:382–394

    Article  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta—Gene Struct Expr 1577:1–9

    CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinfo 4:41

    Article  Google Scholar 

  • Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. CEH Oxford, Oxford

    Google Scholar 

  • Torres JH, Chatellard P, Stutz E (1995) Isolation and characterization of gmsti, a stress-inducible gene from soybean (Glycine max) coding for a protein belonging to the TPR (tetratricopeptide repeats) family. Plant Mol Biol 27:1221–1226

    Article  CAS  Google Scholar 

  • Trott A, Morano KA (2004) SYM1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryotic Cell 3:620–631

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genom Biol 3: research0034.1-0034.11

    Google Scholar 

  • Velten J, Oliver MJ (2001) Tr288, A rehydrin with a dehydrin twist. Plant Mol Biol 45:713–722

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (2006) Eukaryotic transposable elements: teaching old genomes new tricks. In: Caporale L (ed) The implicit genome. Oxford University Press, USA

    Google Scholar 

  • Wong TK-M, Ho C-L, Lee W-W, Rahim RA, Phang S-M (2007) Analysis of expressed sequence tags from Sargassum binderi (Phaeophyta). J Phycol 43:528–534

    Article  CAS  Google Scholar 

  • Wood AJ, Oliver MJ (1999) Translational control in plant stress: the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes. Plant J 18:359–370

    Article  CAS  Google Scholar 

  • Wood AJ, Duff RJ, Oliver MJ (2000) The translational apparatus of Tortula ruralis: polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16 and RPL23 in desiccated and rehydrated gametophytes. J Exp Bot 51:1655–1662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research and technical platform access grants from the Marine-Genomics-Europe Network of Excellence (European Commission Contract No. GOCE-CT-2004-505403; JLO, GAP), as well as support from FCT-FEDER Portugal (GAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth A. Pearson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

ESTs (TCs and singletons) from Fucus EST libraries representing genes putatively involved in cellular stress responses, based on homology with genes in the UniProt database (see text for details). The identity of the contig or EST read, number of sequence reads comprising the contig, and its total length in base pairs are shown. The identity of the gene product, an indication of its function, as well as the E-value and UniProt accession of the best hit (Blastx) are also indicated. (DOC 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, G.A., Hoarau, G., Lago-Leston, A. et al. An Expressed Sequence Tag Analysis of the Intertidal Brown Seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in Response to Abiotic Stressors. Mar Biotechnol 12, 195–213 (2010). https://doi.org/10.1007/s10126-009-9208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9208-z

Keywords

Navigation