Skip to main content
Log in

On the multiplier-penalty-approach for quasi-variational inequalities

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The multiplier-penalty approach is one of the classical methods for the solution of constrained optimization problems. This method was generalized to the solution of quasi-variational inequalities by Pang and Fukushima (Comput Manag Sci 2:21–56, 2005). Based on the recent improvements achieved for the multiplier-penalty approach for optimization, we generalize the method by Pang and Fukushima for quasi-variational inequalities in several respects: (a) We allow to compute inexact KKT-points of the resulting subproblems; (b) We improve the existing convergence theory; (c) We investigate some special classes of quasi-variational inequalities where the resulting subproblems turn out to be easy to solve. Some numerical results indicate that the corresponding method works quite reliable in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuvert, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuvert, M.L.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification applied to an augmented Lagrangian method. Math. Program. 135, 255–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22, 1109–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martínez, J.M., Schuverdt, M.L.: The CPLD condition of Qi and Wei implies the quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  7. Bensoussan, A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes. SIAM J. Control 12, 460–499 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bensoussan, A., Goursat, M., Lions, J.-L.: Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A 276, 1279–1284 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Bensoussan, A., Lions, J.-L.: Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris Sér. A 276, 1189–1192 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Bensoussan, A., Lions, J.-L.: Nouvelles méthodes en contrôle impulsionnel. Appl. Math. Optim. 1, 289–312 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beremlijski, P., Haslinger, J., Kočvara, M., Outrata, J.V.: Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13, 561–587 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  13. Birgin, E.G., Fernández, D., Martínez, J.M.: The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems. Optim. Methods Softw. 27, 1001–1024 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Birgin, E.G., Martínez, J.M.: Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Comput. Optim. Appl. 51, 941–965 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia, PA (2014)

    Book  MATH  Google Scholar 

  16. Bliemer, M., Bovy, P.: Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transp. Res. B 37, 501–519 (2003)

    Article  Google Scholar 

  17. Chan, D., Pang, J.-S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  19. Conn, A.R., Gould, N.I.M., Toint, PhL: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer, New York (1992)

    Book  MATH  Google Scholar 

  20. De Luca, M., Maugeri, A.: Discontinuous quasi-variational inequalities and applications to equilibrium problems. In: Giannessi, F. (ed.) Nonsmooth Optimization: Methods and Applications, pp. 70–75. Gordon and Breach, Amsterdam (1992)

    Google Scholar 

  21. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Facchinei, F., Kanzow, C., Karl, S., Sagratella, S.: The semismooth Newton method for the solution of quasi-variational inequalities. Comput. Optim. Appl. 62, 85–109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Facchinei, F., Kanzow, C., Sagratella, S.: QVILIB: A library of quasi-variational inequality test problems. Pacific J. Optim. 9, 225–250 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT-conditions. Math. Program. 144, 369–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Volumes I + II. Springer, New York (2003)

    MATH  Google Scholar 

  27. Fischer, A., Herrich, M., Schönefeld, K.: Generalized Nash equilibrium problems—recent advances and challenges. Pesqui. Operacional 34, 521–558 (2014)

    Article  Google Scholar 

  28. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hammerstein, P., Selten, R.: Game theory and evolutionary biology. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 2, pp. 929–993. North-Holland, Amsterdam (1994)

    Chapter  Google Scholar 

  30. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  31. Harms, N., Hoheisel, T., Kanzow, C.: On a smooth dual gap function for a class of quasi-variational inequalities. J. Optim. Theory Appl. 163, 413–438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harms, N., Kanzow, C., Stein, O.: Smoothness properties of a regularized gap function for quasi-variational inequalities. Optim. Methods Softw. 29, 720–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haslinger, J., Panagiotopoulos, P.D.: The reciprocal variational approach to the Signorini problem with friction. Approximation results. Proc. R. Soc. Edinb. Sect. A Math. 98, 365–383 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hintermüller, M., Rautenberg, C.N.: A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22, 1224–1257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hintermüller, M., Rautenberg, C.N.: Parabolic quasi-variational inequalities with gradient-type constraints. SIAM J. Optim. 23, 2090–2123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  37. Ichiishi, T.: Game Theory for Economic Analysis. Academic Press, New York (1983)

    MATH  Google Scholar 

  38. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22, 1579–1606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, H., Qi, L.: Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities. J. Math. Anal. Appl. 196, 314–331 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kharroubi, I., Ma, J., Pham, H., Zhang, J.: Backward SDEs with constrained jumps and quasi-variational inequalities. Ann. Probab. 38, 794–840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kravchuk, A.S., Neittaanmaki, P.J.: Variational and Quasi-Variational Inequalities in Mechanics. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  42. Kunze, M., Rodrigues, J.F.: An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Models Methods Appl. Sci. 23, 897–908 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mosco. U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976)

  44. Nesterov, Y., Scrimali, L.: Solving Strongly Monotone Variational and Quasi-Variational Inequalities. CORE Discussion Paper 2006/107, Catholic University of Louvain, Center for Operations Research and Econometrics (2006)

  45. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  46. Noor, M.A.: On general quasi-variational inequalities. J. King Saud Univ. 24, 81–88 (2012)

    Article  Google Scholar 

  47. Noor, M.A.: An iterative scheme for a class of quasi variational inequalities. J. Math. Anal. Appl. 110, 463–468 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Outrata, J.V., Kocvara, M.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5, 275–295 (1995)

    Article  MATH  Google Scholar 

  49. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht and Boston (1998)

    Book  MATH  Google Scholar 

  50. Outrata, J.V., Zowe, J.: A Newton method for a class of quasi-variational inequalities. Comput. Optim. Appl. 4, 5–21 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Qi, L., Wei, Z.: On the constant positive linear dependence condition and its applications to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005). (Erratum: ibid 6, 2009, pp. 373–375)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ryazantseva, I.P.: First-order methods for certain quasi-variational inequalities in Hilbert space. Comput. Math. Math. Phys. 47, 183–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Scrimali, L.: Quasi-Variational Inequality Formulation of the Mixed Equilibrium in Mixed Multiclass Routing Games. CORE discussion paper 2007/7, Catholic University of Louvain, Center for Operations Research and Econometrics (2007)

  55. Siddiqi, A.H., Ansari, Q.H.: Strongly nonlinear quasivariational inequalities. J. Math. Anal. Appl. 149, 444–450 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wei, J.Y., Smeers, Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank both referees for pointing out reference [1] and making several suggestions that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kanzow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanzow, C. On the multiplier-penalty-approach for quasi-variational inequalities. Math. Program. 160, 33–63 (2016). https://doi.org/10.1007/s10107-015-0973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0973-3

Keywords

Mathematics Subject Classification

Navigation