Skip to main content
Log in

Augmented Lagrangian methods under the constant positive linear dependence constraint qualification

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On Augmented Lagrangian methods with general lower-level constraints. Technical Report MCDO-050303, Department of Applied Mathematics, UNICAMP, Brazil (2005)

  2. Andreani R., Martínez J.M. and Schuverdt M.L. (2005). On the relation between Constant Positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125: 473–485

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertsekas D.P. (2003). Nonlinear programming. Athena Scientific, Belmont

    Google Scholar 

  4. Birgin E.G., Castillo R. and Martínez J.M. (2005). Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31: 31–56

    Article  MATH  MathSciNet  Google Scholar 

  5. Birgin E.G. and Martínez J.M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23: 101–125

    Article  MATH  MathSciNet  Google Scholar 

  6. Birgin E.G., Martínez J.M. and Raydan M. (2000). Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10: 1196–1211

    Article  MATH  MathSciNet  Google Scholar 

  7. Birgin E.G., Martínez J.M. and Raydan M. (2001). Algorithm 813: SPG - Software for convex-constrained optimization. ACM Trans. Math. Softw. 27: 340–349

    Article  MATH  Google Scholar 

  8. Birgin E.G., Martínez J.M. and Raydan M. (2003). Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23: 539–559

    Article  MATH  MathSciNet  Google Scholar 

  9. Bongartz I., Conn A.R., Gould N.I.M. and Toint Ph.L. (1995). CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21: 123–160

    Article  MATH  Google Scholar 

  10. Conn A.R., Gould N.I.M. and Toint Ph.L. (1992). LANCELOT: A Fortran Package for Large scale Nonlinear Optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  11. Conn A.R., Gould N.I.M., Sartenaer A. and Toint Ph.L. (1996). Convergence properties of an Augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim. 6: 674–703

    Article  MATH  MathSciNet  Google Scholar 

  12. Conn A.R., Gould N.I.M. and Toint Ph.L. (1991). A globally convergent Augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28: 545–572

    Article  MATH  MathSciNet  Google Scholar 

  13. Diniz-Ehrhardt M.A., Gomes-Ruggiero M.A., Martínez J.M. and Santos S.A. (2004). Augmented Lagrangian algorithms based on the spectral projected gradient for solving nonlinear programming problems. J. Optim. Theory Appl. 123: 497–517

    Article  MATH  MathSciNet  Google Scholar 

  14. Dirkse S.P. and Ferris M.C. (1995). The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5: 123–156

    Google Scholar 

  15. Dolan E.D. and Moré J.J. (2002). Benchmarking optimization software with performance profiles. Math. Program. 91: 201–213

    Article  MATH  MathSciNet  Google Scholar 

  16. Dostál Z. (2005). Inexact semimonotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43: 96–115

    Article  MATH  MathSciNet  Google Scholar 

  17. Dostál Z., Friedlander A. and Santos S.A. (2003). Augmented Lagrangian with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Optim. 13: 1120–1140

    Article  MATH  MathSciNet  Google Scholar 

  18. Dostál Z., Gomes F.A.M. and Santos S.A. (2000). Duality based domain decomposition with natural coarse space for variational inequalities. J. Comput. Appl. Math. 126: 397–415

    Article  MATH  MathSciNet  Google Scholar 

  19. Facchinei F., Fischer A. and Kanzow C. (1998). Regularity properties of a semismooth reformulation of variational inequalities. SIAM J. Optim. 8: 850–869

    Article  MATH  MathSciNet  Google Scholar 

  20. Facchinei F., Fischer A. and Kanzow C. (1997). A semismooth Newton method for variational inequalities: The case of box constraints. In: Ferris, M.C. and Pang, J.-S. (eds) Complementarity and Variational Problems: State of the Art., pp 76–90. SIAM, Philadelphia

    Google Scholar 

  21. Facchinei F., Fischer A., Kanzow C. and Peng J.-M. (1999). A simply constrained reformulation of KKT systems arising from variational inequalities. Appl. Math. Optim. 40: 19–37

    Article  MATH  MathSciNet  Google Scholar 

  22. Facchinei F. and Pang J.-S. (2000). Finite-Dimensional Variational Inequalities and Complementary Problems. Springer Series in Operation Research, Berlin Heidelberg New York, Springer

    Google Scholar 

  23. Ferris, M.C., Munson, T.S.: PATH 4.6 User Manual, http://www.gams.com/solvers/solvers.htm#PATH

  24. Fletcher R. (1987). Practical Methods of Optimization. Academic, London

    MATH  Google Scholar 

  25. Hager W.W. (1993). Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79: 37–71

    Article  MathSciNet  Google Scholar 

  26. Harker P.T. and Pang J.-S. (1990). Finite-dimensional variational inequality and nonlinear complementary problems: a survey of theory, algorithms and applications. Math. Program. 48: 161–220

    Article  MATH  MathSciNet  Google Scholar 

  27. Luo Z.-Q., Pang J.-S. and Ralph D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge

    Google Scholar 

  28. Mangasarian O.L. and Fromovitz S. (1967). The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17: 37–47

    Article  MATH  MathSciNet  Google Scholar 

  29. Qi L. and Wei Z. (2000). On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10: 963–981

    Article  MATH  MathSciNet  Google Scholar 

  30. Raydan M. (1993). On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13: 321–326

    Article  MATH  MathSciNet  Google Scholar 

  31. Raydan M. (1997). The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7: 26–33

    Article  MATH  MathSciNet  Google Scholar 

  32. Rockafellar R.T. (1973). The multiplier method of Hestenes and Powell applied to convex. J. Optim. Theory Appl. 12: 555–562

    Article  MATH  MathSciNet  Google Scholar 

  33. Rockafellar R.T. (1993). Lagrange multipliers and optimality. SIAM Rev. 35: 183–238

    Article  MATH  MathSciNet  Google Scholar 

  34. Shapiro A. (2005). Sensitivity analysis of parameterized variational inequalities. Math. Oper. Res. 30: 109–126

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Birgin.

Additional information

Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.

The authors were supported by PRONEX - CNPq / FAPERJ E-26 / 171.164/2003 - APQ1, FAPESP (Grants 2001/04597-4, 2002/00094-0, 2003/09169-6, 2002/00832-1 and 2005/56773-1) and CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreani, R., Birgin, E.G., Martínez, J.M. et al. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008). https://doi.org/10.1007/s10107-006-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0077-1

Keywords

Mathematics Subject Classification (2000)

Navigation