Skip to main content

The Role of grossone in Nonlinear Programming and Exact Penalty Methods

  • Chapter
  • First Online:
Numerical Infinities and Infinitesimals in Optimization

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 43))

  • 300 Accesses

Abstract

Exact penalty methods form an important class of methods for solving constrained optimization problems. Using penalty functions, the original constrained optimization problem can be transformed in an “equivalent” unconstrained problem. In this chapter we show how grossone can be utilized in constructing exact differentiable penalty functions for the case of only equality constraints, the general case of equality and inequality constraints, and quadratic problems. These new penalty functions allow to recover the solution of the unconstrained problem from the finite term (in its grossone expansion) of the optimal solution of the unconstrained problem. Moreover, Lagrangian duals associated to the constraints are also automatically obtained from the infinitesimal terms. Finally a new algorithmic scheme is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer the reader to Chap. 1 for an in–depth description of this new applied approach to infinite and infinitesimal quantities and the arithmetics of infinity.

  2. 2.

    For further details we refer the reader to Chap. 2 and references therein.

References

  1. Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simul. 141, 24–39 (2017)

    Article  MathSciNet  Google Scholar 

  2. Astorino, A., Fuduli, A.: Spherical separation with infinitely far center. Soft. Comput. 24(23), 17751–17759 (2020)

    Article  Google Scholar 

  3. Cococcioni, M., Cudazzo, A., Pappalardo, M., Sergeyev, Y.D.: Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun. Nonlinear Sci. Numer. Simul. 84, 105177 (2020)

    Article  MathSciNet  Google Scholar 

  4. Cococcioni, M., Fiaschi, L.: The Big-M method with the numerical infinite M. Optim. Lett. 15, 2455–2468 (2021)

    Article  MathSciNet  Google Scholar 

  5. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Towards lexicographic multi-objective linear programming using grossone methodology. In: Y.D. Sergeyev, D.E. Kvasov, F. Dell’Accio, M.S. Mukhametzhanov (eds.) Proceedings of the 2nd International Conference. Numerical Computations: Theory and Algorithms, vol. 1776, p. 090040. AIP Publishing, New York (2016)

    Google Scholar 

  6. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  7. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  8. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  9. De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)

    MATH  Google Scholar 

  10. De Leone, R., Egidi, N., Fatone, L.: The use of grossone in elastic net regularization and sparse support vector machines. Soft. Comput. 24(23), 17669–17677 (2020)

    Article  Google Scholar 

  11. De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: How grossone can be helpful to iteratively compute negative curvature directions. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11353 LNCS, pp. 180–183 (2019)

    Google Scholar 

  12. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)

    Article  MathSciNet  Google Scholar 

  13. Di Pillo, G., Grippo, L.: An exact penalty method with global convergence properties for nonlinear programming problems. Math. Program. 36, 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  14. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27(6), 1333–1360 (1989)

    Article  MathSciNet  Google Scholar 

  15. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley (1990)

    Google Scholar 

  16. Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesimals in a variable metric method for convex nonsmooth optimization. Appl. Math. Comput. 318, 312–320 (2018)

    MATH  Google Scholar 

  17. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)

    Article  MathSciNet  Google Scholar 

  18. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai-Borwein gradient method. Comput. Optim. Appl. 23(2), 143–169 (2002)

    Article  MathSciNet  Google Scholar 

  19. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37(3), 297–328 (2007)

    Article  MathSciNet  Google Scholar 

  20. Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: Computation of higher order Lie derivatives on the Infinity Computer. J. Comput. Appl. Math. 383(113135) (2021)

    Google Scholar 

  21. Lai, L., Fiaschi, L., Cococcioni, M.: Solving mixed Pareto-lexicographic multi-objective optimization problems: the case of priority chains. Swarm Evol. Comput. 55 (2020)

    Google Scholar 

  22. Mangasarian, O.L.: Nonlinear programming. McGraw-Hill Series in Systems Science. McGraw-Hill, New York (1969)

    Google Scholar 

  23. Margenstern, M.: An application of grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press (1970)

    Google Scholar 

  25. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory, Methods Appl. 71(12), e1688–e1707 (2009)

    Google Scholar 

  26. Sergeyev, Y.D.: Higher order numerical differentiation on the infinity computer. Optim. Lett. 5(4), 575–585 (2011)

    Google Scholar 

  27. Sergeyev, Y.D.: On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers, Ultrametric Anal. Appl. 3(2), 129–148 (2011)

    Google Scholar 

  28. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011)

    Article  MathSciNet  Google Scholar 

  29. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Google Scholar 

  30. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite. Found. Sci. 24(1), 153–170 (2019)

    Article  Google Scholar 

  31. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the infinity computer. Int. J. Unconv. Comput. 12(1), 3–23 (2016)

    Google Scholar 

  32. Solodov, M.V.: Constraint qualifications. In: Wiley Encyclopedia of Operations Research and Management Science. Wiley Online Library (2010)

    Google Scholar 

  33. Sun, W., Han, J., Sun, J.: Global convergence of nonmonotone descent methods for unconstrained optimization problems. J. Comput. Appl. Math. 146(1), 89–98 (2002)

    Article  MathSciNet  Google Scholar 

  34. Wang, Z., Fang, S.C., Xing, W.: On constraint qualifications: motivation, design and inter-relations. J. Ind. Manag. Optim. 9, 983–1001 (2013)

    Google Scholar 

  35. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato De Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Leone, R. (2022). The Role of grossone in Nonlinear Programming and Exact Penalty Methods. In: Sergeyev, Y.D., De Leone, R. (eds) Numerical Infinities and Infinitesimals in Optimization. Emergence, Complexity and Computation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-93642-6_3

Download citation

Publish with us

Policies and ethics