Skip to main content

Advertisement

Log in

Solving quasi-variational inequalities via their KKT conditions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose to solve a general quasi-variational inequality by using its Karush–Kuhn–Tucker conditions. To this end we use a globally convergent algorithm based on a potential reduction approach. We establish global convergence results for many interesting instances of quasi-variational inequalities, vastly broadening the class of problems that can be solved with theoretical guarantees. Our numerical testings are very promising and show the practical viability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Bensoussan, A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes. SIAM J. Control 12, 460–499 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan, A., Goursat, M., Lions, J.-L.: Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A 276, 1279–1284 (1973)

    MATH  MathSciNet  Google Scholar 

  5. Bensoussan, A., Lions, J.-L.: Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris Sér. A 276, 1189–1192 (1973)

    MATH  MathSciNet  Google Scholar 

  6. Bensoussan, A., Lions, J.-L.: Nouvelles méthodes en contrôle impulsionnel. Appl. Math. Optim. 1, 289–312 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beremlijski, P., Haslinger, J., Kočvara, M., Outrata, J.: Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13, 561–587 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bliemer, M., Bovy, P.: Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transp. Res. B Methodol. 37, 501–519 (2003)

    Article  Google Scholar 

  9. Chan, D., Pang, J.-S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  11. De Luca, M., Maugeri, A.: Discontinuous quasi-variational inequalities and applications to equilibrium problems. In: Giannessi, F. (ed.) Nonsmooth Optimization: Methods and Applications, pp. 70–75. Gordon and Breach, Amsterdam (1992)

    Google Scholar 

  12. Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  13. Donato, M.B., Milasi, M., Vitanza, C.: An existence result of a quasi-variational inequality associated to an equilibrium problem. J. Glob. Optim. 40, 87–97 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Facchinei, F., Kanzow, C., Sagratella, S.: QVILIB: A library of quasi-variational inequality test problems. To appear in Pac. J. Optim.

  18. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)

    Google Scholar 

  19. Ferris, M.C., Munson, T.S.: Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12, 207–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Glowinski, R.: Numerical methods for variational inequalities. Springer, Berlin (2008, reprint of the 1984 edition)

  22. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  23. Hammerstein, P., Selten, R.: Game theory and evolutionary biology. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 2, pp. 929–993. North-Holland, Amsterdam (1994)

    Chapter  Google Scholar 

  24. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  25. Haslinger, J., Panagiotopoulos, P.D.: The reciprocal variational approach to the Signorini problem with friction. Approximation results. Proc. R. Soc. Edinb. Sect. A Math. 98, 365–383 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  27. Ichiishi, T.: Game Theory for Economic Analysis. Academic Press, New York (1983)

    MATH  Google Scholar 

  28. Kharroubi, I., Ma, J., Pham, H., Zhang, J.: Backward SDEs with constrained jumps and quasi-variational inequalities. Ann. Probab. 38, 794–840 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kravchuk, A.S., Neittaanmaki, P.J.: Variational and Quasi-variational Inequalities in Mechanics. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  30. Kubota, K., Fukushima, M.: Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144, 511–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kunze, M., Rodrigues, J.F.: An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci. 23, 897–908 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Monteiro, R.D.C., Pang, J.-S.: A potential reduction Newton method for constrained equations. SIAM J. Optim. 9, 729–754 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976)

  34. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. CORE discussion paper 2006/107, Catholic University of Louvain, Center for Operations Research and Econometrics (2006)

  35. Noor, M.A.: On general quasi-variational inequalities. J. King Saud Univ. 24, 81–88 (2012)

    Article  Google Scholar 

  36. Noor, M.A.: An iterative scheme for a class of quasi variational inequalities. J. Math. Anal. Appl. 110, 463–468 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ortega, J.M., Rheinboldt, J.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970). (reprinted by SIAM, Philadelphia (2000))

    MATH  Google Scholar 

  38. Outrata, J., Kocvara, M.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5, 275–295 (1995)

    Article  Google Scholar 

  39. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  40. Outrata, J., Zowe, J.: A Newton method for a class of quasi-variational inequalities. Comput. Optim. Appl. 4, 5–21 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pang, J.-S.: The implicit complementarity problem. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 4, pp. 487–518. Academic Press, New York (1981)

    Google Scholar 

  42. Pang, J.-S.: On the convergence of a basic iterative method for the implicit complementarity problem. J. Optim. Theory Appl. 37, 149–162 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pang, J.-S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MATH  Google Scholar 

  44. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science 2, 21–56 (2005) [Erratum: ibid 6, 373–375 (2009)]

    Google Scholar 

  45. Ryazantseva, I.P.: First-order methods for certain quasi-variational inequalities in Hilbert space. Comput. Math. Math. Phys 47, 183–190 (2007)

    Article  MathSciNet  Google Scholar 

  46. Scrimali, L.: Quasi-variational inequality formulation of the mixed equilibrium in mixed multiclass routing games. CORE discussion paper 2007/7, Catholic University of Louvain, Center for Operations Research and Econometrics (2007)

  47. Siddiqi, A.H., Ansari, Q.H.: Strongly nonlinear quasivariational inequalities. J. Math. Anal. Appl. 149, 444–450 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wei, J.Y., Smeers, Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are thankful to Jiří Outrata and Michal Kočvara who very kindly provided us with the Matlab codes used to generate the data for the test problems OutKZ31 and OutKZ41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Facchinei.

A Appendix on monotonicity and Lipschitz properties

A Appendix on monotonicity and Lipschitz properties

In this appendix we recall some well-known definitions and discuss some related results. Although the latter are also mostly well-known, in some cases we could not find in the literature the exact versions we needed. Therefore, for completeness we also report the proofs of these results.

We begin by recalling the definitions of several classes of functions.

Definition 2

Let \( D \subseteq {\mathbb{R }}^n \) and \( F: D \rightarrow {\mathbb{R }}^n \) be a given function. Then

  1. (a)

    \(F\) is strongly monotone on \(D\) with constant \(\sigma \) if \( \sigma >0 \) and

    $$\begin{aligned} (x - y)^{\scriptscriptstyle T}\big ( F(x) - F(y) \big ) \,\ge \, \sigma \Vert x - y\Vert ^2, \quad \forall x, y \in D; \end{aligned}$$

    The largest \(\sigma \) for which such a relation holds is termed the monotonicity modulus of \(F\) on \(D\):

    $$\begin{aligned} \sigma (D,F) \, :=\, \inf _{x\ne y, x,y \in D}\frac{(x - y)^{\scriptscriptstyle T}\big ( F(x) - F(y) \big )}{\Vert x-y\Vert ^2}. \end{aligned}$$
  2. (b)

    \(F\) is co-coercive on \(D\) with constant \(\xi \) if \( \xi >0 \) and

    $$\begin{aligned} (x - y)^{\scriptscriptstyle T}\big ( F(x) - F(y) \big ) \,\ge \, \xi \Vert F(x) - F(y)\Vert ^2, \quad \forall x, y \in D; \end{aligned}$$
  3. (c)

    \(F\) is Lipschitz continuous on \(D\) with constant \(L \ge 0\) if

    $$\begin{aligned} \Vert F(x) - F(y)\Vert \, \le \, L \Vert x - y\Vert , \quad \forall x, y \in D. \end{aligned}$$

    The smallest \(L\) for which such relation holds is termed the Lipschitz modulus of \(F\) on \(D\):

    $$\begin{aligned} L(D,F) \, :=\, \sup _{x\ne y, x,y \in D} \frac{\Vert F(x) - F(y)\Vert }{\Vert x-y\Vert }. \end{aligned}$$
  4. (d)

    \(F\) is a homeomorphism of \(D\) onto \(F(D)\) if \(F\) is one-to-one on \(D\) (that is \(F(x) \ne F(y)\) whenever \(x,y \in D, x \ne y\), or, in other words, \(F\) has a single-valued inverse \(F^{-1}\) defined on \(F(D)\)), and \(F\) and \(F^{-1}\) are continuous on \(D\) and \(F(D)\), respectively. \(\square \)

Characterizations of the Lipschitz and strong monotonicity moduli are given in the following result.

Proposition 3

Let \( D \subseteq {\mathbb{R }}^n \) be an open, convex subset of \({\mathbb{R }}^n\) and let \( F: D \rightarrow {\mathbb{R }}^n \) be a continuously differentiable function. Then the following statements hold:

  1. (a)

    \(F\) is Lipschitz continuous on \( D \) with constant \(L\) if and only if \( \Vert J\!F(x)\Vert \le L \) for all \( x \in D \); consequently

    $$\begin{aligned} L(D,F) \, =\, \sup _{x\in D}\Vert J\!F(x)\Vert , \end{aligned}$$

    provided the \(\sup \) on the right hand side is finite.

  2. (b)

    \(F\) is strongly monotone on \( D\) with constant \(\sigma \) if and only if \( h^{\scriptscriptstyle T}J\!F(x) h \ge \sigma \Vert h\Vert ^2 \) for all \( x \in D , \, h \in {\mathbb{R }}^n \); consequently

    $$\begin{aligned} \sigma (D,F) \, =\, \inf _{x\in D}\mu _m^s(J\!F(x)), \end{aligned}$$

    provided the \(\inf \) on the right hand side is positive.

Proof

  1. (a)

    From Theorem 3.2.3 in [37], if \( \Vert J\!F(x)\Vert \le L \) then \(L\) is a Lipschitz constant for \(F\) on \(D\). Conversely, assume that

    $$\begin{aligned} \big \Vert F(x) - F(y) \big \Vert \le L \Vert x - y \Vert , \quad \forall x, y \in D \end{aligned}$$
    (35)

    holds. Applying the differential mean value theorem to each component function \( F_i \) of \( F \), it follows that, for any given \( x, y \in D \), we can find suitable points \( \xi ^{(i)} \in (x,y) \) such that

    $$\begin{aligned} F_i(x) - F_i (y) = \nabla F_i (\xi ^{(i)})^T (x-y) \quad \forall i = 1, \ldots , n. \end{aligned}$$

    Setting

    $$\begin{aligned} G(\xi ) := \left( \begin{array}{ccc}&\nabla F_1 (\xi ^{(1)})^T&\\&\vdots&\\&\nabla F_n (\xi ^{(n)})^T&\end{array} \right) \in {\mathbb{R }}^{n \times n}, \end{aligned}$$

    this can be rewritten in a compact way as

    $$\begin{aligned} F(x) - F(y) = G(\xi ) (x-y). \end{aligned}$$
    (36)

    Now, let \( x \in D \) be fixed, and note that

    $$\begin{aligned} G( \xi ) \rightarrow J\!F (x) \end{aligned}$$
    (37)

    for any sequence \( y \rightarrow x \) in view of the continuous differentiability of \( F \). We now consider a particular sequence \( y = x + td \) with a fixed (but arbitrary) vector \( d \in {\mathbb{R }}^n \setminus \{ 0 \} \) and a sequence \( t \downarrow 0 \). Then (35) and (36) together imply

    $$\begin{aligned} \big \Vert G(\xi ) t d \big \Vert = \big \Vert F(x) - F(x + td) \big \Vert \le L \Vert t d \Vert . \end{aligned}$$

    Dividing by \( t \) and subsequently letting \( t \downarrow 0 \) (note that \( \xi \) still depends on \( t \)), we obtain

    $$\begin{aligned} \big \Vert J\!F(x) d \big \Vert \le L \Vert d \Vert \end{aligned}$$

    in view of (37). Since \( d \) was taken arbitrarily, this implies \( \Vert J\!F(x) \Vert \le L \), and this inequality is true for any vector \( x \in D \).

  2. (b)

    See [37, Theorem 5.4.3]. \(\square \)

The following result gives a relation between the Lipschitz constants etc. of a given mapping \( F \) and its inverse \( F^{-1} \).

Proposition 4

Let a function \(F: D\rightarrow {\mathbb{R }}^n\) be given where \(D\) is an open subset of \({\mathbb{R }}^n\). Assume that two positive constants \(\ell \) and \(L\) exist such that

$$\begin{aligned} \ell \Vert x -y\Vert \le \Vert F(x) - F(y) \Vert \le L \Vert x-y\Vert , \quad \forall x, y \in D. \end{aligned}$$
(38)

Then \(F\) is a homeomorphism from \(D\) to \(F(D)\) (which is an open set) and

$$\begin{aligned} \frac{1}{L}\Vert a-b\Vert \le \Vert F^{-1}(a) - F^{-1}(b) \Vert \le \frac{1}{\ell } \Vert a-b\Vert , \quad \forall a, b \in F(D), \end{aligned}$$
(39)

in particular, \( F \) and \( F^{-1} \) are Lipschitz continuous on \( D \) and \( F(D) \), respectively.

Proof

The first inequality from (38) implies that \(F\) is one-to-one on \(D\) (therefore the inverse \( F^{-1} \) exists on \( F(D)\)), and that, setting \( a = F (x)\) and \(b = F (y)\), the second inequality in (39) holds. In particular, this implies that \( F^{-1} \) is Lipschitz continuous on \( F(D) \), hence continuous, so that \( F(D) = (F^{-1})^{-1} (D) \), being the pre-image of a continuous map of the open set \( D \), is also an open set. Finally, let \( a, b \in F(D)\) be arbitrarily given. Setting \( x = F^{-1} (a),y = F^{-1} (b) \), we obtain from the second inequality in (38) that

$$\begin{aligned} \Vert F^{-1} (a) - F^{-1} (b) \Vert = \Vert x - y \Vert \ge \frac{1}{L} \Vert F(x) - F(y) \Vert = \frac{1}{L} \Vert a - b \Vert , \end{aligned}$$

and this completes the proof. \(\square \)

The next result considers a strongly monotone and Lipschitz continuous mapping and provides suitable bounds for the moduli of Lipschitz continuity and strong monotonicity of the corresponding inverse function. We stress, however, that the constant of strong monotonicity of the inverse function provided by this result is really just an estimate and typically not exact. It seems difficult to find a stronger bound in the general context discussed here. In a more specialized situation, much better results can be obtained, see Proposition 6 below.

Proposition 5

Let \( D \subseteq {\mathbb{R }}^n \) be an open set and \( F: D \rightarrow {\mathbb{R }}^n \) be strongly monotone with modulus \(\sigma \) and Lipschitz continuous with modulus \(L\) on \(D\). Then \(F\) is co-coercive with constant \(\frac{\sigma }{L^2}\). Furthermore, it holds that the inverse \( F^{-1} \) exists on \(F(D)\), is Lipschitz with constant \(\frac{1}{\sigma }\) and strongly monotone with constant \(\frac{\sigma }{L^2}\).

Proof

We can write

$$\begin{aligned} \big ( F(x) - F(y) \big )^{\scriptscriptstyle T}(x-y) \ge \sigma \Vert x - y \Vert ^2, \quad \forall x, y \in D \end{aligned}$$

and

$$\begin{aligned} \Vert F(x) - F(y) \Vert ^2 \le L^2 \Vert x - y \Vert ^2, \quad \forall x, y \in D \end{aligned}$$

by assumption. A combination of these two inequalities yields

$$\begin{aligned} \Vert F(x) - F(y) \Vert ^2 \le L^2 \Vert x \!-\! y \Vert ^2 \le \frac{L^2}{\sigma } \big ( F(x) \!-\! F(y) \big )^{\scriptscriptstyle T}(x-y), \quad \forall x, y \in D.\qquad \end{aligned}$$
(40)

Hence \( F \) is co-coercive with constant \( \frac{\sigma }{L^2} \).

By Proposition 4 we know that \(F\) is a homeomorphism from \(D\) to \(F(D)\) and \(F^{-1}\) is Lipschitz continuous with constant \(\frac{1}{\sigma }\). Finally writing \( a=F(x), b=F(y) \) in (40) gives

$$\begin{aligned} \big ( F^{-1}(a) - F^{-1}(b) \big )^{\scriptscriptstyle T}(a-b) \ge \frac{\sigma }{L^2} \Vert a - b \Vert ^2, \quad \forall a, b \in F(D). \end{aligned}$$

This completes the proof. \(\square \)

The following result gives an exact estimate of the Lipschitz and strong monotonicity moduli of the inverse of a function under the assumption that the mapping \( F \) itself is a gradient mapping, i.e. that \( F = \nabla f \) for a differentiable real-valued function \( f \).

Proposition 6

Let \( D \subseteq {\mathbb{R }}^n \) be an open convex set and \(F: D\rightarrow {\mathbb{R }}^n\) be a gradient mapping. Assume that \(F\) is strongly monotone with modulus \(\sigma \) and Lipschitz continuous with modulus \(L\) on \(D\). Then the inverse function \( F^{-1} \) exists on \(F(D)\), is Lipschitz with modulus \(\frac{1}{\sigma }\) and strongly monotone with modulus \(\frac{1}{L}\).

Proof

The result can easily be derived from the Baillon–Haddad Theorem, see [1], when \(D={\mathbb{R }}^n\). We give here a direct proof which is valid also when \(D \ne {\mathbb{R }}^n\). In view of Proposition 5, we only have to verify the statement that \( F^{-1} \) is strongly monotone with constant \(\frac{1}{L}\).

To this end, first consider a symmetric positive definite matrix \( A \in {\mathbb{R }}^{n \times n} \), let \( A^{1/2} \) be the corresponding (unique) symmetric positive definite square root of \( A \) so that \( A^{1/2} A^{1/2} = A \), and let \( A^{-1/2} \) be the inverse of \( A^{1/2} \). Then the symmetry of \( A^{1/2} \) together with the Cauchy–Schwarz inequality implies

$$\begin{aligned} \Vert d \Vert ^2 = d^{\scriptscriptstyle T}d = d^{\scriptscriptstyle T}A^{1/2} A^{-1/2} d \le \Vert A^{1/2} d \Vert \cdot \Vert A^{-1/2} d \Vert , \quad \forall d \in {\mathbb{R }}^n. \end{aligned}$$

Squaring both sides shows that

$$\begin{aligned} \Vert d \Vert ^4 \le \big ( d^{\scriptscriptstyle T}A d \big ) \big ( d^{\scriptscriptstyle T}A^{-1} d \big ), \quad \forall d \in {\mathbb{R }}^n \end{aligned}$$
(41)

holds. Since \( F \) is strongly monotone, the Jacobian \( J\!F(x) \) is positive definite for all \( x \in D \); furthermore, since \( F \) is a gradient mapping, this Jacobian is also symmetric. Hence we can apply inequality (41) to the matrix \( A := J\!F(x) \) and obtain

$$\begin{aligned} \Vert d \Vert ^4&\le \big ( d^{\scriptscriptstyle T}J\!F(x) d \big ) \big ( d^{\scriptscriptstyle T}J\!F(x)^{-1} d \big ) \\&\le \big ( d^{\scriptscriptstyle T}J\!F(x)^{-1} d \big ) \Vert d \Vert ^2 \Vert J\!F(x) \Vert \\&\le \big ( d^{\scriptscriptstyle T}J\!F(x)^{-1} d \big ) L \Vert d \Vert ^2, \qquad \forall d \in {\mathbb{R }}^n, \end{aligned}$$

where the second inequality uses the Cauchy–Schwarz inequality once again, and the third inequality takes into account Proposition 3. This implies

$$\begin{aligned} \frac{1}{L} d^{\scriptscriptstyle T}d = \frac{1}{L} \Vert d \Vert ^2 \le \big ( d^{\scriptscriptstyle T}J\!F(x)^{-1} d \big ), \quad \forall d \in {\mathbb{R }}^n \forall x \in D. \end{aligned}$$

Since \( J\!F(x)^{-1} = J\!F^{-1}(y) \) for \( y = F(x) \) by the Inverse Function Theorem, this gives

$$\begin{aligned} \frac{1}{L} d^{\scriptscriptstyle T}d \le d^{\scriptscriptstyle T}J\!F^{-1}(y) d, \quad \forall d \in {\mathbb{R }}^n \forall y \in F(D). \end{aligned}$$

By a well-known result, see [37, Theorem 5.4.3] this is equivalent to saying that \( F^{-1} \) is strongly monotone on \( F(D) \) with constant \( 1/L \). \(\square \)

The sharper result from Proposition 6 regarding the modulus of strong monotonicity does, in general, not hold for non-gradient mappings, see the corresponding discussion and (counter-) example at the end of Sect. 3.2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchinei, F., Kanzow, C. & Sagratella, S. Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144, 369–412 (2014). https://doi.org/10.1007/s10107-013-0637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0637-0

Keywords

Mathematics Subject Classification (2000)

Navigation