Skip to main content

Advertisement

Log in

Light-emitting diode phototherapy: pain relief and underlying mechanisms

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Pain is a common symptom of an illness. For decades, pain treatments such as non-steroidal anti-inflammatory drugs, opioids, and surgical nerve blocking have been widely used, but each method has its limitations. Photobiomodulation is a recently developed method for pain management, with light-emitting diodes (LEDs) being a more recent development used in pain management because of their low cost, low side effects, and high safety. Here, we reviewed the phototherapeutic effects of LEDs on different pain conditions. We also discussed possible physicochemical and neurobiological mechanisms underlying LED therapy, especially its effects on inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCO:

Cytochrome c oxidase

COX:

Cyclooxygenase

DRG:

Dorsal root ganglion

IL:

Interleukin

LEDT:

Light-emitting diode therapy

NO:

Nitric oxide

PBMT:

Photobiomodulation

PGE2:

Prostaglandin E2

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor alpha

References

  1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S et al (2020) The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161(9):1976–1982. https://doi.org/10.1097/j.pain.0000000000001939

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17(8):485–496. https://doi.org/10.1038/nrn.2016.68

    Article  CAS  PubMed  Google Scholar 

  3. Kuner R, Flor H (2017) Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 18(2):113. https://doi.org/10.1038/nrn.2017.5

    Article  CAS  PubMed  Google Scholar 

  4. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10(4):287–333. https://doi.org/10.1016/j.ejpain.2005.06.009

    Article  PubMed  Google Scholar 

  5. Grzybowski A, Sak J, Pawlikowski J (2016) A brief report on the history of phototherapy. Clin Dermatol 34(5):532–537. https://doi.org/10.1016/j.clindermatol.2016.05.002

    Article  PubMed  Google Scholar 

  6. Armstrong RA (2013) What causes Alzheimer’s disease? Folia Neuropathol 51(3):169–188. https://doi.org/10.5114/fn.2013.37702

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Yue X, Luo H, Jiang W, Mei Y, Ai L et al (2019) Illumination with 630 nm red light reduces oxidative stress and restores memory by photo-activating catalase and formaldehyde dehydrogenase in SAMP8 mice. Antioxid Redox Signal 30(11):1432–1449. https://doi.org/10.1089/ars.2018.7520

    Article  PubMed  Google Scholar 

  8. Albarracin R, Natoli R, Rutar M, Valter K, Provis J (2013) 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina. BMC Neurosci 14:125. https://doi.org/10.1186/1471-2202-14-125

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beirne K, Rozanowska M, Votruba M (2016) Red light treatment in an axotomy model of neurodegeneration. Photochem Photobiol 92(4):624–631. https://doi.org/10.1111/php.12606

    Article  CAS  PubMed  Google Scholar 

  10. Del Olmo-Aguado S, Nunez-Alvarez C, Osborne NN (2016) Red light of the visual spectrum attenuates cell death in culture and retinal ganglion cell death in situ. Acta Ophthalmol 94(6):e481–e491. https://doi.org/10.1111/aos.12996

    Article  CAS  PubMed  Google Scholar 

  11. Mateen FJ, Manalo NC, Grundy SJ, Houghton MA, Hotan GC, Erickson H et al (2017) Light therapy for multiple sclerosis-associated fatigue: study protocol for a randomized controlled trial. Medicine (Baltimore) 96(36):e8037. https://doi.org/10.1097/MD.0000000000008037

    Article  Google Scholar 

  12. Muili KA, Gopalakrishnan S, Eells JT, Lyons JA (2013) Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS ONE 8(6):e67358. https://doi.org/10.1371/journal.pone.0067358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons JA (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS ONE 7(1):e30655. https://doi.org/10.1371/journal.pone.0030655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandes de Abreu DA, Eyles D, Feron F (2009) Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 34(Suppl 1):S265–S277. https://doi.org/10.1016/j.psyneuen.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  15. van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Simmons R, Taylor BV et al (2003) Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. BMJ 327(7410):316. https://doi.org/10.1136/bmj.327.7410.316

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bjornevik K, Riise T, Casetta I, Drulovic J, Granieri E, Holmoy T et al (2014) Sun exposure and multiple sclerosis risk in Norway and Italy: The EnvIMS study. Mult Scler 20(8):1042–1049. https://doi.org/10.1177/1352458513513968

    Article  PubMed  Google Scholar 

  17. Valk GD, Kriegsman DM, Assendelft WJ (2005) Patient education for preventing diabetic foot ulceration. Cochrane Database Syst Rev (1):CD001488. https://doi.org/10.1002/14651858.CD001488.pub2

  18. Gan EY, Tian EA, Tey HL (2013) Management of herpes zoster and post-herpetic neuralgia. Am J Clin Dermatol 14(2):77–85. https://doi.org/10.1007/s40257-013-0011-2

    Article  PubMed  Google Scholar 

  19. Mukhtar R, Fazal MU, Saleem M, Saleem S (2020) Role of low-level laser therapy in post-herpetic neuralgia: a pilot study. Lasers Med Sci 35(8):1759–1764. https://doi.org/10.1007/s10103-020-02969-5

    Article  PubMed  Google Scholar 

  20. Nabarawy EE (2011) The use of narrow band ultraviolet light B in the prevention and treatment of postherpetic neuralgia (a pilot study). Indian J Dermatol 56(1):44–47. https://doi.org/10.4103/0019-5154.77551

    Article  PubMed  PubMed Central  Google Scholar 

  21. Knapp DJ (2013) Postherpetic neuralgia: case study of class 4 laser therapy intervention. Clin J Pain 29(10):e6-9. https://doi.org/10.1097/AJP.0b013e31828b8ef8

    Article  PubMed  Google Scholar 

  22. Nussbaumer B, Kaminski-Hartenthaler A, Forneris CA, Morgan LC, Sonis JH, Gaynes BN et al (2015) Light therapy for preventing seasonal affective disorder. Cochrane Database Syst Rev (11):CD011269. https://doi.org/10.1002/14651858.CD011269.pub2

  23. Zenchak JR, Palmateer B, Dorka N, Brown TM, Wagner LM, Medendorp WE et al (2020) Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson’s disease mouse model. J Neurosci Res 98(3):458–468. https://doi.org/10.1002/jnr.24237

    Article  CAS  PubMed  Google Scholar 

  24. Johnstone DM, el Massri N, Moro C, Spana S, Wang XS, Torres N et al (2014) Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism - an abscopal neuroprotective effect. Neuroscience 274:93–101. https://doi.org/10.1016/j.neuroscience.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  25. Hennessy M, Hamblin MR (2017) Photobiomodulation and the brain: a new paradigm. J Opt 19(1):013003. https://doi.org/10.1088/2040-8986/19/1/013003

    Article  CAS  PubMed  Google Scholar 

  26. Hamblin MR (2018) Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 96(4):731–743. https://doi.org/10.1002/jnr.24190

    Article  CAS  PubMed  Google Scholar 

  27. Leisman G, Machado C, Machado Y, Chinchilla-Acosta M (2018) Effects of low-level laser therapy in autism spectrum disorder. Adv Exp Med Biol 1116:111–130. https://doi.org/10.1007/5584_2018_234

    Article  CAS  PubMed  Google Scholar 

  28. Khongrum J, Wattanathorn J (2015) Laser acupuncture improves behavioral disorders and brain oxidative stress status in the valproic acid rat model of autism. J Acupunct Meridian Stud 8(4):183–191. https://doi.org/10.1016/j.jams.2015.06.008

    Article  PubMed  Google Scholar 

  29. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3). https://doi.org/10.1109/JSTQE.2016.2561201.

  30. Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S et al (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44

    PubMed  PubMed Central  Google Scholar 

  31. Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–17. https://doi.org/10.1039/c8pp90049c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moreno I, Sun CC (2008) Modeling the radiation pattern of LEDs. Opt Express 16(3):1808–1819. https://doi.org/10.1364/oe.16.001808

    Article  PubMed  Google Scholar 

  33. Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27(4):227–238. https://doi.org/10.1016/j.sder.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  34. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27(3):387–393. https://doi.org/10.1089/pho.2009.2503

    Article  PubMed  Google Scholar 

  35. Chia YY, Liu CC, Feng GM, Tseng CA, Hung KC, Chen CC et al (2017) The antinociceptive effect of light-emitting diode irradiation on incised wounds is correlated with changes in cyclooxygenase 2 activity, prostaglandin E2, and proinflammatory cytokines. Pain Res Manag 2017:4792489. https://doi.org/10.1155/2017/4792489

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cidral-Filho FJ, Mazzardo-Martins L, Martins DF, Santos AR (2014) Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med Sci 29(2):695–702. https://doi.org/10.1007/s10103-013-1385-3

    Article  PubMed  Google Scholar 

  37. Pereira FC, Parisi JR, Maglioni CB, Machado GB, Barragan-Iglesias P, Silva JRT et al (2017) Antinociceptive effects of low-level laser therapy at 3 and 8 j/cm(2) in a rat model of postoperative pain: possible role of endogenous Opioids. Lasers Surg Med 49(9):844–851. https://doi.org/10.1002/lsm.22696

    Article  PubMed  Google Scholar 

  38. de Barros Araujo Junior R, Gonzaga ICA, Fernandes GA, Lima ACG, Cortelazzi PST, de Oliveira RA, et al. (2018) Low-intensity LED therapy (lambda 640 +/- 20 nm) on saphenectomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. Lasers Med Sci 33(1):103-9. https://doi.org/10.1007/s10103-017-2354-z

  39. Langella LG, Casalechi HL, Tomazoni SS, Johnson DS, Albertini R, Pallotta RC et al (2018) Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci 33(9):1933–1940. https://doi.org/10.1007/s10103-018-2558-x

    Article  PubMed  Google Scholar 

  40. Lima AC, Fernandes GA, Gonzaga IC, de Barros AR, de Oliveira RA, Nicolau RA (2016) Low-level laser and light-emitting diode therapy for pain control in hyperglycemic and normoglycemic patients who underwent coronary bypass surgery with internal mammary artery grafts: a randomized, double-blind study with follow-up. Photomed Laser Surg 34(6):244–251. https://doi.org/10.1089/pho.2015.4049

    Article  CAS  PubMed  Google Scholar 

  41. Tenis CA, Martins MD, Goncalves MLL, Silva D, Cunha Filho JJD, Martins MAT et al (2018) Efficacy of diode-emitting diode (LED) photobiomodulation in pain management, facial edema, trismus, and quality of life after extraction of retained lower third molars: a randomized, double-blind, placebo-controlled clinical trial. Medicine (Baltimore) 97(37):e12264. https://doi.org/10.1097/MD.0000000000012264

    Article  Google Scholar 

  42. Vasconcelos AB, Nampo FK, Molina JC, Silva MB, Oliveira AS, de Angelis TR et al (2019) Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats. Lasers Med Sci 34(4):749–758. https://doi.org/10.1007/s10103-018-2655-x

    Article  PubMed  Google Scholar 

  43. Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF et al (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27(5):1051–1058. https://doi.org/10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  44. da Costa Santos VB, de Paula RS, Milanez VF, Correa JC, de Andrade Alves RI, Dias IF et al (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29(2):599–605. https://doi.org/10.1007/s10103-013-1371-9

    Article  PubMed  Google Scholar 

  45. Della Santa GML, Ferreira MC, Machado TPG, Oliveira MX, Santos AP (2021) Effects of photobiomodulation therapy (LED 630 nm) on muscle and nerve histomorphometry after axonotmesis. Photochem Photobiol 97(5):1116–1122. https://doi.org/10.1111/php.13415

    Article  CAS  PubMed  Google Scholar 

  46. Foley J, Vasily DB, Bradle J, Rudio C, Calderhead RG (2016) 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. Laser Ther 25(1):35–42. https://doi.org/10.5978/islsm.16-OR-03

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Paiva PR, Tomazoni SS, Johnson DS, Vanin AA, Albuquerque-Pontes GM, Machado CD et al (2016) Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med Sci 31(9):1925–1933. https://doi.org/10.1007/s10103-016-2071-z

    Article  PubMed  Google Scholar 

  48. De Marchi T, Schmitt VM, Machado GP, de Sene JS, de Col CD, Tairova O et al (2017) Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med Sci 32(2):429–437. https://doi.org/10.1007/s10103-016-2139-9

    Article  PubMed  Google Scholar 

  49. Chang W-D, Lin H-Y, Chang N-J, Wu J-H (2021) Effects of 830 nm light-emitting diode therapy on delayed-onset muscle soreness. Evid Based Complement Alternat Med 2021:6690572. https://doi.org/10.1155/2021/6690572

    Article  Google Scholar 

  50. Cidral-Filho FJ, Martins DF, More AO, Mazzardo-Martins L, Silva MD, Cargnin-Ferreira E et al (2013) Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-alpha levels after sciatic nerve crush in mice. Eur J Pain 17(8):1193–1204. https://doi.org/10.1002/j.1532-2149.2012.00280.x

    Article  CAS  PubMed  Google Scholar 

  51. Martins DF, Turnes BL, Cidral-Filho FJ, Bobinski F, Rosas RF, Danielski LG et al (2016) Light-emitting diode therapy reduces persistent inflammatory pain: role of interleukin 10 and antioxidant enzymes. Neuroscience 324:485–495. https://doi.org/10.1016/j.neuroscience.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  52. Pigatto GR, Coelho IS, Aquino RS, Bauermann LF, Santos ARS (2017) Light-emitting diode phototherapy reduces nocifensive behavior induced by thermal and chemical noxious stimuli in mice: evidence for the involvement of capsaicin-sensitive central afferent fibers. Mol Neurobiol 54(5):3205–3218. https://doi.org/10.1007/s12035-016-9887-1

    Article  CAS  PubMed  Google Scholar 

  53. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120(11):3760–3772. https://doi.org/10.1172/JCI42843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354(6312):578–584. https://doi.org/10.1126/science.aaf8933

    Article  CAS  PubMed  Google Scholar 

  56. Esposito MF, Malayil R, Hanes M, Deer T (2019) Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med 20(Suppl 1):S23–S30. https://doi.org/10.1093/pm/pnz012

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bell A (2018) The neurobiology of acute pain. Vet J 237:55–62. https://doi.org/10.1016/j.tvjl.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  58. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. https://doi.org/10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  59. Muramoto K, Ohta K, Shinzawa-Itoh K, Yamashita E, Tsukihara T, Yoshikawa S (2010) Photo-dependent binding structures of CO and NO on the heme-copper site in bovine cytochrome c oxidase. Bba-Bioenergetics 1797:97–98. https://doi.org/10.1016/j.bbabio.2010.04.294

    Article  Google Scholar 

  60. Jimenez-Gutierrez LR, Uribe-Carvajal S, Sanchez-Paz A, Chimeo C, Muhlia-Almazan A (2014) The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia. J Bioenerg Biomembr 46(3):189–196. https://doi.org/10.1007/s10863-013-9537-5

    Article  CAS  PubMed  Google Scholar 

  61. Shoubridge EA (2001) Cytochrome c oxidase deficiency. Am J Med Genet 106(1):46–52. https://doi.org/10.1002/ajmg.1378

    Article  CAS  PubMed  Google Scholar 

  62. Das TK, Tomson FL, Gennis RB, Gordon M, Rousseau DL (2001) pH-dependent structural changes at the heme-copper binuclear center of cytochrome c oxidase. Biophys J 80(5):2039–2045. https://doi.org/10.1016/s0006-3495(01)76177-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wikstrom M, Sharma V (2018) Proton pumping by cytochrome c oxidase - a 40year anniversary. Biochim Biophys Acta Bioenerg 1859(9):692–8. https://doi.org/10.1016/j.bbabio.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  64. Michel H, Behr J, Harrenga A, Kannt A (1998) Cytochrome c oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 27(1):329–356. https://doi.org/10.1146/annurev.biophys.27.1.329

    Article  CAS  PubMed  Google Scholar 

  65. Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159

    PubMed  Google Scholar 

  66. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E et al (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771. https://doi.org/10.1074/jbc.M409650200

    Article  CAS  PubMed  Google Scholar 

  67. Segelcke D, Reichl S, Neuffer S, Zapp S, Ruther T, Evers D et al (2020) The role of the spinal cyclooxygenase (COX) for incisional pain in rats at different developmental stages. Eur J Pain 24(2):312–324. https://doi.org/10.1002/ejp.1487

    Article  CAS  PubMed  Google Scholar 

  68. Seybold VS, Jia YP, Abrahams LG (2003) Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain 105(1–2):47–55. https://doi.org/10.1016/s0304-3959(03)00254-9

    Article  CAS  PubMed  Google Scholar 

  69. Gul Amuk N, Kurt G, Guray E (2018) Effects of photobiomodulation and ultrasound applications on orthodontically induced inflammatory root resorption; transcriptional alterations in OPG, RANKL, Cox-2: an experimental study in rats. Photomed Laser Surg 36(12):653–659. https://doi.org/10.1089/pho.2018.4508

    Article  CAS  PubMed  Google Scholar 

  70. Kawabata A (2011) Prostaglandin E2 and pain–an update. Biol Pharm Bull 34(8):1170–1173. https://doi.org/10.1248/bpb.34.1170

    Article  CAS  PubMed  Google Scholar 

  71. de Paiva Carvalho RL, Leal-Junior EC, Petrellis MC, Marcos RL, de Carvalho MH, De Nucci G et al (2013) Effects of low-level laser therapy (LLLT) and diclofenac (topical and intramuscular) as single and combined therapy in experimental model of controlled muscle strain in rats. Photochem Photobiol 89(2):508–512. https://doi.org/10.1111/j.1751-1097.2012.01236.x

    Article  CAS  PubMed  Google Scholar 

  72. Dos Santos LS, Saltorato JC, Monte MG, Marcos RL, Lopes-Martins RAB, Tomazoni SS et al (2019) PBMT and topical diclofenac as single and combined treatment on skeletal muscle injury in diabetic rats: effects on biochemical and functional aspects. Lasers Med Sci 34(2):255–262. https://doi.org/10.1007/s10103-018-2580-z

    Article  PubMed  Google Scholar 

  73. Pigatto GR, Silva CS, Parizotto NA (2019) Photobiomodulation therapy reduces acute pain and inflammation in mice. J Photochem Photobiol B 196:111513. https://doi.org/10.1016/j.jphotobiol.2019.111513

    Article  CAS  PubMed  Google Scholar 

  74. Verri WA Jr, Cunha TM, Poole S, Ferreira SH, Cunha FQ (2007) Cytokine inhibitors and pain control. Rev Bras Reumatol 47(5):341–353. https://doi.org/10.1590/s0482-50042007000500009

    Article  Google Scholar 

  75. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51(5):951–966. https://doi.org/10.1016/j.freeradbiomed.2011.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu J, Wei X, Gao F, Zhong X, Guo R, Ji Y et al (2020) Nicotinamide adenine dinucleotide phosphate oxidase 2-derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the sciatic nerve. Pain 161(4):758–772. https://doi.org/10.1097/j.pain.0000000000001761

    Article  CAS  PubMed  Google Scholar 

  78. Malcangio M (2019) Role of the immune system in neuropathic pain. Scand J Pain 20(1):33–37. https://doi.org/10.1515/sjpain-2019-0138

    Article  PubMed  Google Scholar 

  79. Primo FL, de Paula LB, de Siqueira-Moura MP, Tedesco AC (2012) Photobiostimulation on wound healing treatment by ClAlPc-nanoemulsion from a multiple-wavelength portable light source on a 3D-human stem cell dermal equivalent. Curr Med Chem 19(30):5157–5163. https://doi.org/10.2174/092986712803530502

    Article  CAS  PubMed  Google Scholar 

  80. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22(4):212–218. https://doi.org/10.1002/(sici)1096-9101(1998)22:4%3c212::aid-lsm5%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  81. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M et al (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278(42):40917–40922. https://doi.org/10.1074/jbc.M303034200

    Article  CAS  PubMed  Google Scholar 

  82. Strubakos CD, Malik M, Wider JM, Lee I, Reynolds CA, Mitsias P et al (2020) Non-invasive treatment with near-infrared light: a novel mechanisms-based strategy that evokes sustained reduction in brain injury after stroke. J Cereb Blood Flow Metab 40(4):833–844. https://doi.org/10.1177/0271678X19845149

    Article  CAS  PubMed  Google Scholar 

  83. Sanderson TH, Wider JM, Lee I, Reynolds CA, Liu J, Lepore B et al (2018) Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep 8(1):3481. https://doi.org/10.1038/s41598-018-21869-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spiller F, Oliveira Formiga R, da Silva F, Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ (2019) Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 89:32–40. https://doi.org/10.1016/j.niox.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  86. Schmidtko A, Tegeder I, Geisslinger G (2009) No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32(6):339–346. https://doi.org/10.1016/j.tins.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  87. Moriyama Y, Moriyama EH, Blackmore K, Akens MK, Lilge L (2005) In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging. Photochem Photobiol 81(6):1351–1355. https://doi.org/10.1562/2005-02-28-RA-450

    Article  CAS  PubMed  Google Scholar 

  88. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L (2009) In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 41(3):227–231. https://doi.org/10.1002/lsm.20745

    Article  PubMed  Google Scholar 

  89. Gomes LE, Dalmarco EM, Andre ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30(11):642–647. https://doi.org/10.1089/pho.2012.3242

    Article  CAS  PubMed  Google Scholar 

  90. Lane N (2006) Cell biology: power games. Nature 443(7114):901–903. https://doi.org/10.1038/443901a

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120(5):849–857. https://doi.org/10.1046/j.1523-1747.2003.12133.x

    Article  CAS  PubMed  Google Scholar 

  92. Houreld NN, Ayuk SM, Abrahamse H (2014) Expression of genes in normal fibroblast cells (WS1) in response to irradiation at 660nm. J Photochem Photobiol B 130:146–152. https://doi.org/10.1016/j.jphotobiol.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  93. Rohringer S, Holnthoner W, Chaudary S, Slezak P, Priglinger E, Strassl M et al (2017) The impact of wavelengths of LED light-therapy on endothelial cells. Sci Rep 7(1):10700. https://doi.org/10.1038/s41598-017-11061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23(2):167–171. https://doi.org/10.1089/pho.2005.23.167

    Article  CAS  PubMed  Google Scholar 

  95. Min PK, Goo BL (2013) 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study. Laser Ther 22(1):43–49. https://doi.org/10.5978/islsm.13-or-06

    Article  PubMed  PubMed Central  Google Scholar 

  96. McDaniel DH, Weiss RA, Geronemus RG, Mazur C, Wilson S, Weiss MA (2010) Varying ratios of wavelengths in dual wavelength LED photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med 42(6):540–545. https://doi.org/10.1002/lsm.20947

    Article  CAS  PubMed  Google Scholar 

  97. Skerratt SE, West CW (2015) Ion channel therapeutics for pain. Channels (Austin) 9(6):344–351. https://doi.org/10.1080/19336950.2015.1075105

    Article  Google Scholar 

  98. Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990. https://doi.org/10.1146/annurev.biochem.73.011303.073940

    Article  CAS  PubMed  Google Scholar 

  99. Honmura A, Ishii A, Yanase M, Obata J, Haruki E (1993) Analgesic effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageenin-induced inflammation. Lasers Surg Med 13(4):463–469. https://doi.org/10.1002/lsm.1900130411

    Article  CAS  PubMed  Google Scholar 

  100. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802. https://doi.org/10.1002/lsm.20583

    Article  PubMed  Google Scholar 

  101. Peres e Serra A, Ashmawi HA (2010) Influence of naloxone and methysergide on the analgesic effects of low-level laser in an experimental pain model. Rev Bras Anestesiol 60(3):302–310. https://doi.org/10.1016/S0034-7094(10)70037-4

    Article  CAS  PubMed  Google Scholar 

  102. Ibrahim MM, Patwardhan A, Gilbraith KB, Moutal A, Yang X, Chew LA et al (2017) Long-lasting antinociceptive effects of green light in acute and chronic pain in rats. Pain 158(2):347–360. https://doi.org/10.1097/j.pain.0000000000000767

    Article  PubMed  PubMed Central  Google Scholar 

  103. Martin LF, Patwardhan AM, Jain SV, Salloum MM, Freeman J, Khanna R et al (2021) Evaluation of green light exposure on headache frequency and quality of life in migraine patients: A preliminary one-way cross-over clinical trial. Cephalalgia 41(2):135–147. https://doi.org/10.1177/0333102420956711

    Article  PubMed  Google Scholar 

  104. Zhan C, Wang W, Santamaria C, Wang B, Rwei A, Timko BP et al (2017) Ultrasensitive Phototriggered Local Anesthesia. Nano Lett 17(2):660–665. https://doi.org/10.1021/acs.nanolett.6b03588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the National Key R&D Program of China (2017YFB0403803), the Innovative Research Team of High-level Local Universities in Shanghai, the National Natural Science Foundation of China (81971056, 31600852, 81771202, 81873101), and the Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01).

Author information

Authors and Affiliations

Authors

Contributions

W.W.Z. and X.Y.W collected the title-related materials and drafted the review. Y.Q.W. and Y.X.C. revised and finalized the submitted manuscript. W.W.Z. and X.Y.W contributed equally to this article.

Corresponding authors

Correspondence to Yu-Xia Chu or Yan-Qing Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WW., Wang, XY., Chu, YX. et al. Light-emitting diode phototherapy: pain relief and underlying mechanisms. Lasers Med Sci 37, 2343–2352 (2022). https://doi.org/10.1007/s10103-022-03540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03540-0

Keywords

Navigation