Skip to main content
Log in

The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase (COX), which is located in the inner membrane of mitochondria, is a key constituent of the electron transport chain that catalyzes the reduction of oxygen. The Pacific whiteleg shrimp Litopenaeus vannamei is constantly exposed to hypoxic conditions, which affects both the central metabolism and the mitochondrial function. The purpose of this study was to isolate shrimp mitochondria, identify the COX complex and to evaluate the effect of hypoxia on the shrimp mitochondrial function and in the COX activity. A 190 kDa protein was identified as COX by immunodetection techniques. The effect of hypoxia was confirmed by an increase in the shrimp plasma L-lactate concentration. COX activity, mitochondrial oxygen uptake and protein content were reduced under hypoxic conditions, and gradually restored as hypoxia continued, this suggests an adaptive mitochondrial response and a highly effective COX enzyme. Both mitochondrial oxygen uptake and COX activity were completely inhibited by KCN and sodium azide, suggesting that COX is the unique oxidase in L. vannamei mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele D, Philip E, Gonzalez PM, Puntarulo S (2007) Marine invertebrate mitochondria and oxidative stress. Front Biosci 12:933–946

    Article  CAS  Google Scholar 

  • Buckler KJ, Turner PJ (2013) Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol 591(14):3549–3563

    Article  CAS  Google Scholar 

  • Chen J, Gao Y, Liao W, Huang J, Gao W (2012) Hypoxia affects mitochondrial protein expression in rat skeletal muscle. OMICS J Integr Biol 16(3):98–104

    Article  CAS  Google Scholar 

  • Costa-de-Oliveira S, Sampaio-Marques B, Barbosa M, Ricardo E, Pina-Vaz C, Ludovico P, Rodrigues AG (2012) An alternative respiratory pathway on Candida krusei: implications on susceptibility. Profile and oxidative stress. FEMS Yeast Res 20:287–294

    Google Scholar 

  • Dabos KJ, Whalen HR, Newsome PN, Parkinson JA, Henderson NC, Sadler IH, Hayes PC, Plevris JN (2011) Impaired gluconeogenesis in a porcine model of paracetamol induced acute liver failure. World J Gastroenterol 17(11):1457–1461

    Article  CAS  Google Scholar 

  • Dassa EP, Dufour E, Gonçalves S, Paupe V, Hakkaart GA, Jacobs HT, Rustin P (2009) Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med 1(1):30–36

    Article  CAS  Google Scholar 

  • Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40(5):419–424

    Article  CAS  Google Scholar 

  • Fontanesi F, Soto IC, Barrientos A (2008) Cytochrome c oxidase biogenesis: new levels of regulation. Int Union Biochem Mol Biol Life 60(9):557–568

    Article  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  Google Scholar 

  • Grossman LI, Lomax MI (1997) Nuclear genes for cytochrome c oxidase. Biochim Biophys Acta 1352:171–192

    Google Scholar 

  • Guerrero-Castillo S, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2009) In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim Biophys Acta 1787:75–85

    Article  CAS  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina. J Exp Biol 211:2617–2623

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Influence of oxygen availability. In: Hochachka PW, Somero GN (eds) Biochemical adaptation. Oxford University Press, New York, pp 107–157

    Google Scholar 

  • Hofmann GE, Hand SC (1990) Arrest of cytochrome-c oxidase synthesis coordinated with catabolic arrest in dormant Artemia embryos. Am J Physiol 258(5):R1184–R1191

    CAS  Google Scholar 

  • Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I (2012) Regulation of mitochondrial respiration and apoptosis through cell signalling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 1817:598–609

    Article  Google Scholar 

  • Jimenez-Gutierrez LR, Hernandez-Lopez J, Islas-Osuna MA, Muhlia-Almazan A (2013) Three nucleus-encoded subunits of mitochondrial cytochrome c oxidase of the whiteleg shrimp Litopenaeus vannamei: cDNA characterization, phylogeny and mRNA expression during hypoxia and reoxygenation. Comp Biochem Physiol 166B(1):30–39

    Article  Google Scholar 

  • Keller M, Sommer AM, Pörtner KO, Abele D (2004) Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. J Exp Biol 207(14):2529–2538

    Article  CAS  Google Scholar 

  • Liu JZ, Gao WX, Cai MC, Cao LF, Sun BY (2002) Effects of ATP concentration and hypoxic exposure on RNA and protein synthesis activity in isolated mitochondria from rat brain. Sheng Li Xue Bao 54(6):485–489

    CAS  Google Scholar 

  • Martinez-Cruz O, Calderon de la Barca AM, Uribe-Carvajal S, Muhlia-Almazan A (2012) The function of mitochondrial FOF1 ATP-synthase from the whiteleg shrimp Litopenaeus vannamei muscle during hypoxia. Comp Biochem Physiol 162B:107–112

    Article  Google Scholar 

  • Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol 292:C615–C640

    Article  CAS  Google Scholar 

  • McDonald AE, Vanlerberghe GC, Staples JF (2009) Alternative oxidase in animals: unique characteristics and taxonomic distribution. J Exp Biol 212(16):2627–2634

    Article  CAS  Google Scholar 

  • Ongwijitwat S, Wong-Riley MTT (2005) Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten-nuclear encoded cytochrome c oxidase subunits in neurons? Gene 360:65–77

    Article  CAS  Google Scholar 

  • Paez-Osuna F, Gracia A, Flores-Verdugo F, Lyle-Fritch LP, Alonso-Rodrıguez R, Roque A, Ruiz-Fernandez AC (2003) Shrimp aquaculture development and the environment in the Gulf of California ecoregion. Mar Pollut Bull 46:806–815

    Article  CAS  Google Scholar 

  • Paital B, Chainy GB (2012) Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol 155C(2):228–237

    Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively down-regulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197

    Article  CAS  Google Scholar 

  • Philip E, Abele D (2007) Marine invertebrate mitochondria: respiratory balance in extreme environments. Comp Biochem Physiol 148A:S91–S94

    Article  Google Scholar 

  • Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI (2012) Cytochrome c oxidase: evolution of control via nuclear subunit addition. Biochim Biophys Acta 1817(4):590–597

    Article  CAS  Google Scholar 

  • Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG (2006) Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 281(4):2061–2070

    Article  CAS  Google Scholar 

  • Racotta I, Palacios SE, Mendez L (2002) Metabolic responses to short and long term exposure to hypoxia in white shrimp (Penaeus vannamei). Mar Freshw Behav Physiol 35:269–275

    Article  CAS  Google Scholar 

  • Re AD, Diaz F (2011) Effect of different oxygen concentrations on physiological energetics of blue shrimp, Litopenaeus stylirostris (Stimpson). Open Zool J 4:1–8

    Article  CAS  Google Scholar 

  • Schägger H, von Jagow G (1995) Native electrophoresis for isolation of mitocondrial oxidative phosphorylation protein complexes. Methods Enzymol 260:190–203

    Article  Google Scholar 

  • Vargas-Albores F, Guzmán MA, Ochoa JL (1993) An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeus shrimp. Comp Biochem Physiol 106A(2):299–303

    Article  CAS  Google Scholar 

  • Vijayasarathy C, Damle S, Prabu S, Otto C, Avadhani N (2003) Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem 270:871–879

    Article  CAS  Google Scholar 

  • Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Xu WH (2010) Differential expression, phosphorylation of COX subunit 1 and COX activity during diapause phase in the cotton bollworm, Helicoverpa armigera. J Insect Physiol 56(12):1992–1998

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muhlia-Almazan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez-Gutierrez, L.R., Uribe-Carvajal, S., Sanchez-Paz, A. et al. The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia. J Bioenerg Biomembr 46, 189–196 (2014). https://doi.org/10.1007/s10863-013-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9537-5

Keywords

Navigation