Skip to main content

Advertisement

Log in

In vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the in vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm visible laser combined with malachite green (MG) dye in the inactivation of Staphylococcus aureus (ATCC 25923) biofilms formed within compact and cancellous bone specimens. Specimens of 80 compact bones and 80 cancellous bones were contaminated with a standard suspension of S. aureus and incubated for 14 days at 37 °C to allow for the formation of biofilms. The specimens were divided into the following groups (n = 10) according to the treatment conditions: PS−L − (control — no treatment), PS+L − (only MG for 5 min), PS−L + 90 (only laser irradiation for 90 s), PS−L + 180 (only laser irradiation for 180 s), PS−L + 300 (only laser irradiation for 300 s), APDT90 (APDT for 90 s), APDT180 (APDT for 180 s), and APDT300 (APDT for 300 s). The findings were statistically analyzed using an ANOVA 5 %. All of the experimental groups were significantly different from the control group for both the compact and cancellous bone specimens. The compact bone specimens that received APDT treatment (for either 90, 180, or 300 s) showed reductions in the log10 CFU/ml of S. aureus by a magnitude of 4 log10. Cancellous bone specimens treated with 300 s of APDT showed the highest efficacy, and these specimens had a reduction in S. aureus CFU/ml by a factor of 3 log10. APDT treatment using these proposed parameters in combination with MG was effective at inactivating S. aureus biofilms in compact and cancellous bone specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hajin KI, Salih DS, Rassan YZ (2010) Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus. Laser Med Sci 25:743–748. doi:10.1007/s10103-010-0803-z

    Article  Google Scholar 

  2. Harwood PJ, Giannoudis PV, Probst C, Krettec C, Pape HC (2006) The risk of local infective complications after damage control procedures for femoral shaft fracture. J Orthop Trauma 20:181–189

    PubMed  Google Scholar 

  3. McGarry SA, Engemann JJ, Schmader K, Sexton DJ, Kaye KS (2004) Surgical-site infection due to Staphylococcus aureus among elderly patients: mortality, duration of hospitalization, and cost. Infect Control Hosp Epidemiol 25:461–467

    Article  PubMed  Google Scholar 

  4. Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. BJD 164:987–995. doi:10.1111/j.1365-2133.2011.10232.x

    Article  CAS  Google Scholar 

  5. Denis TGST, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR et al (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infections disease. Virulence 2:509–520. doi:10.4161/viru.2.6.17889

    Article  Google Scholar 

  6. Vilela SFG, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AOC (2012) Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol 57:704–710. doi:10.1016/j.archoralbio.2011.12.002

    Article  PubMed  CAS  Google Scholar 

  7. Wiles TJ, Kulesus RR, Mulvey MA (2008) Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 85:11–19. doi:10.1016/j.yexmp.2008.03.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Pereira CA, Romeiro RL, Costa ACBP, Machado AKS, Junqueira JC, Jorge AOC (2011) Susceptibility of Candida albicans and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26:341–348. doi:10.1007/s10103-010-0852-3

    Article  PubMed  Google Scholar 

  9. Kiran MD, Giacometti A, Cirioni O, Balaban N (2008) Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31:761–770

    PubMed  CAS  Google Scholar 

  10. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: Part one. Photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293. doi:10.1016/S1572-1000(05)00007-4

    Article  CAS  Google Scholar 

  11. Kashef N, Abadi GRS, Djavid GE (2012) Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli. Photodiagn Photodyn Ther 9:11–15. doi:10.1016/j.pdpdt.2011.11.004

    Article  CAS  Google Scholar 

  12. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42:38–44. doi:10.1002/lsm.20887

    Article  PubMed  PubMed Central  Google Scholar 

  13. McBain AJ, Gilbert P (2001) Biocide tolerance and the harbingers of doom. International Biodeterioration & Biodegradation 47:55–61

    Article  CAS  Google Scholar 

  14. Wainwright M, Crossley KB (2004) Photosensitizing agents circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegrad 53:119–126

    Article  CAS  Google Scholar 

  15. Feuerstein O, Moreiros D, Steinberg D (2006) Sinergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. J Antimicrob Chemother 57:872–876

    Article  PubMed  CAS  Google Scholar 

  16. Saji G, Kishen A (2008) Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis. Photochemistry and Photobiology 84:734–740. doi:10.1111/j.1751-1097.2007.00244.x

    Article  Google Scholar 

  17. Dovigo LN, Pavarina AC, de Oliveira Mima EG, Giampaolo ET, Vergani CE, Bagnato VS (2011) Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 54:123–130. doi:10.1111/j.1439-0507.2009.01769.x

    Article  PubMed  CAS  Google Scholar 

  18. Dunbar LM, Tang DM, Manausa RM (2008) A review of telavancin in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manage 4:235–244

    CAS  Google Scholar 

  19. Kim SY, Kwon OJ, Park JW (2001) Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie 83:437–444

    Article  PubMed  CAS  Google Scholar 

  20. Bisland SK, Chien C, Wilson BC, Burch S (2006) Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. Photochem Photobiol Sci 5:31–38

    Article  PubMed  CAS  Google Scholar 

  21. Xu Y, Young MJ, Battaglino RA, Morse LR, Fontana CR, Pagonis TC et al (2009) Endodontic antimicrobial photodynamic therapy: safety assessment in mammalian cell cultures. J Endodont 35:1567–1572. doi:10.1016/j.joen.2009.08.002

    Article  Google Scholar 

  22. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AOC (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389. doi:10.1007/s10103-009-0706-z

    Article  PubMed  Google Scholar 

  23. Miyabe M, Junqueira JC, Costa ACBP, Jorge AOC, Ribeiro MS, Feist IS (2011) Effect of photodynamic therapy on clinical isolates of Staphylococcus spp. Braz Oral Res 25:230–234

    Article  PubMed  Google Scholar 

  24. Wainwright M (2002) Pathogen inactivation in blood products. Current Medicinal Chemistry 9:127–143

    Article  PubMed  CAS  Google Scholar 

  25. Prates RA, Yamada AM Jr, Suzuki LC, Eiko Hashimoto MC, Cai S, Gouw-Soares S et al (2007) Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B 86:70–76

    Article  PubMed  CAS  Google Scholar 

  26. Junqueira JC, Ribeiro MA, Rossoni RD, Barbosa JO, Querido SM, Jorge AO (2010) Antimicrobial photodynamic therapy: photodynamic antimicrobial effects of malachite green on Staphylococcus, Enterobacteriaceae, and Candida. Photomed Laser Surg 28:67–72. doi:10.1089/pho.2009.2526

    Google Scholar 

  27. Lavi R, Ankri R, Sinyakov M, Eichler M, Friedmann H, Shainberg A et al (2011) The plasma membrane is involved in the visible light-tissue interaction. Photomed Laser Surg 10:1–6. doi:10.1089/pho.2011.3083

    Google Scholar 

  28. Gois MM, Kurachi C, Santana EJB, Mima EG, Spolidório DM, Pelino JE et al (2010) Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: an in vitro study. Lasers Med Sci 25:391–395. doi:10.1007/s10103-009-0705-0

    Article  PubMed  Google Scholar 

  29. Martins JS, Junqueira JC, Faria RL, Santiago NF, Rossoni RD, Colombo CE et al (2011) Antimicrobial photodynamic therapy in rat experimental candidiasis: evaluation of pathogenicity factors of Candida albicans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:71–77. doi:10.1016/j.tripleo.2010.08.012

    Article  Google Scholar 

  30. Luan XL, Qin YL, Bi LJ, Hu CY, Zhang ZG, Lin J et al (2009) Histological evaluation of the safety of toluidine bluemediated photosensitization to periodontal tissues in mice. Lasers Med Sci 24:162–166. doi:10.1007/s10103-007-0513-3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Pereira Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.P., da Silva, F.C., Nader, S.A. et al. In vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens. Lasers Med Sci 29, 1959–1965 (2014). https://doi.org/10.1007/s10103-014-1613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1613-5

Keywords

Navigation