Skip to main content

Advertisement

Log in

Antimicrobial effect of photodynamic therapy using methylene blue and red color diode laser on biofilm attached to sandblasted and acid-etched surface of titanium

  • Original Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the antimicrobial effect of photodynamic therapy (PDT) on biofilm attached to sandblasted and acid-etched (SLA) surfaces.

Methods

The bacterial strains used were Aggregatibacter actinomycetemcomitans and Streptococcus sanguinis. SLA disks were subdivided into five groups including one control group and four test groups (laser-alone, methylene blue (MB)-alone, PDT60, and PDT120) for PDT examination for each surface. The laser-alone group was only irradiated with a diode laser for 60 s. The MB-alone group was put into 1 ml of 100 μg/ml of methylene blue for 60 s. PDT60 and PDT120 groups were put into 1 ml of 100 μg/ml methylene blue and then irradiated for 60 and 120 s, respectively. After treatment, the survival rate of bacteria was determined by counting the colony-forming units (CFUs) after incubation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to observe the microorganisms on the disk surfaces.

Results

Significant differences were found between the control group, LED-alone group, MB-alone group, and PDT60 and PDT120 groups (P < 0.05). The PDT60 and PDT120 groups showed a decreasing tendency of live bacteria. In the SEM images, the control group, LED-alone group, and MB-alone group showed intact bacterial cell walls. However, the bacterial cell walls were changed after PDT. On CLSM images, the PDT60 and PDT120 groups showed a high proportion of dead bacteria with red color.

Conclusions

These findings suggest that combination of methylene blue and a red color LED (Periowave®) was effective in reducing the viability of biofilm attached to SLA titanium surface in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP et al (1997) Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 8:161–172

    Article  PubMed  Google Scholar 

  2. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19:247–259

    PubMed  Google Scholar 

  3. Jovanovic SA (1993) The management of peri-implant breakdown around functioning osseointegrated dental implants. J Periodontol 64:1176–1183

    Article  PubMed  Google Scholar 

  4. Heitz-Mayfield LJ (2008) Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol 35:292–304

    Article  PubMed  Google Scholar 

  5. Mouhyi J, Dohan Ehrenfest DM, Albrektsson T (2012) The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res 14:170–183

    Article  PubMed  Google Scholar 

  6. Koyanagi T, Sakamoto M, Takeuchi Y, Maruyama N, Ohkuma M, Izumi Y (2013) Comprehensive microbiological findings in peri-implantitis and periodontitis. J Clin Periodontol 40:218–226

    Article  PubMed  Google Scholar 

  7. Adell R, Lekholm U, Rockler B, Brånemark PI, Lindhe J, Eriksson B et al (1986) Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg 15:39–52

    Article  PubMed  Google Scholar 

  8. Mombelli A, Buser D, Lang NP (1988) Colonization of osseointegrated titanium implants in edentulous patients. Early results. Oral Microbiol Immunol 3:113–120

    Article  PubMed  Google Scholar 

  9. Bower RC, Radny NR, Wall CD, Henry PJ (1989) Clinical and microscopic findings in edentulous patients 3 years after incorporation of osseointegrated implant-supported bridgework. J Clin Periodontol 16:580–587

    Article  PubMed  Google Scholar 

  10. Hultin M, Gustafsson A, Hallstrom H, Johansson LA, Ekfeldt A, Klinge B (2002) Microbiological findings and host response in patients with peri-implantitis. Clin Oral Implants Res 13:349–358

    Article  PubMed  Google Scholar 

  11. Quirynen M, Alsaadi G, Pauwels M, Haffajee A, van Steenberghe D, Naert I (2005) Microbiological and clinical outcomes and patient satisfaction for two treatment options in the edentulous lower jaw after 10 years of function. Clin Oral Implants Res 16:277–287

    Article  PubMed  Google Scholar 

  12. Devides SL, Franco AT (2006) Evaluation of peri-implant microbiota using the polymerase chain reaction in completely edentulous patients before and after placement of implant-supported prostheses submitted to immediate load. Int J Oral Maxillofac Implants 21:262–269

    PubMed  Google Scholar 

  13. Persson LG, Berglundh T, Lindhe J, Sennerby L (2001) Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res 12:595–603

    Article  PubMed  Google Scholar 

  14. Matarasso S, Quaremba G, Coraggio F, Vaia E, Cafiero C, Lang NP (1996) Maintenance of implants: an in vitro study of titanium implant surface modifications subsequent to the application of different prophylaxis procedures. Clin Oral Implants Res 7:64–72

    Article  PubMed  Google Scholar 

  15. Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY et al (2009) Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 51:109–140

    Article  Google Scholar 

  16. Romeo U, Nardi GM, Libotte F, Sabatini S, Palaia G, Grassi FR. The antimicrobial photodynamic therapy in the treatment of peri-implantitis. Int J Dent. 2016:7692387. https://doi.org/10.1155/2016/7692387

  17. Lerario F, Roncati M, Gariffo A, Attorresi A, Lucchese A, Galanakis A et al (2016) Non-surgical periodontal treatment of peri-implant diseases with the adjunctive use of diode laser: preliminary clinical study. Lasers Med Sci 31:1–6

    Article  PubMed  Google Scholar 

  18. Eick S, Markauskaite G, Nietzsche S, Laugisch O, Salvi GE, Sculean A (2013) Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis. Photodiagn Photodyn Ther 10:156–167

    Article  Google Scholar 

  19. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haas R, Dortbudak O, Mensdorff-Pouilly N, Mailath G (1997) Elimination of bacteria on different implant surfaces through photosensitization and soft laser. An in vitro study. Clin Oral Implants Res 8:249–254

    Article  PubMed  Google Scholar 

  21. Dortbudak O, Haas R, Bernhart T, Mailath-Pokorny G (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12:104–108

    Article  PubMed  Google Scholar 

  22. Block CM, Mayo JA, Evans GH (1992) Effects of the Nd:YAG dental laser on plasma-sprayed and hydroxyapatite-coated titanium dental implants: surface alteration and attempted sterilization. Int J Oral Maxillofac Implants 7:441–449

    PubMed  Google Scholar 

  23. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17:841–850

    Article  PubMed  Google Scholar 

  24. Marotti J, Tortamano P, Cai S, Ribeiro MS, Franco JE, de Campos TT (2013) Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci 28:303–309

    Article  PubMed  Google Scholar 

  25. Usacheva MN, Teichert MC, Biel MA (2003) The interaction of lipopolysaccharides with phenothiazine dyes. Lasers Surg Med 33:311–319

    Article  PubMed  Google Scholar 

  26. Wilson M, Gibson M, Strahan D, Harvey WA (1992) Preliminary evaluation of the use of a redox agent in the treatment of chronic periodontitis. J Periodontal Res 27:522–527

    Article  PubMed  Google Scholar 

  27. Wainwright M, Phoenix DA, Gaskell M, Marshall B (1999) Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp. J Antimicrob Chemother 44:823–825

    Article  PubMed  Google Scholar 

  28. Bartlett JA, Indig GL (1999) Effect of self-association and protein binding on the photochemical reactivity of triarylmethanes. Implications of noncovalent interactions on the competition between photosensitization mechanisms type I and type II. Photochem Photobiol 70:490–498

    Article  PubMed  Google Scholar 

  29. Geminiani A, Caton JG, Romanos GE (2012) Temperature change during non-contact diode laser irradiation of implant surfaces. Lasers Med Sci 27:339–342

    Article  PubMed  Google Scholar 

  30. Leja C, Geminiani A, Caton J, Romanos GE (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28:1435–1440

    Article  PubMed  Google Scholar 

  31. Soukos NS, Wilson M, Burns T, Speight PM (1996) Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med 18:253–259

    Article  PubMed  Google Scholar 

  32. Teichert MC, Jones JW, Usacheva MN, Biel MA (2002) Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:155–160

    Article  PubMed  Google Scholar 

  33. Vilela SF, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AO (2012) Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol 57:704–710

    Article  PubMed  Google Scholar 

  34. Shibli JA, Martins MC, Theodoro LH, Lotufo RF, Garcia VG, Marcantonio EJ (2003) Lethal photosensitization in microbiological treatment of ligature-induced peri-implantitis: a preliminary study in dogs. J Oral Sci 45:17–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Kwan Lee or Heung-Sik Um.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Park, S.H., Chang, BS. et al. Antimicrobial effect of photodynamic therapy using methylene blue and red color diode laser on biofilm attached to sandblasted and acid-etched surface of titanium. Laser Dent Sci 1, 83–90 (2017). https://doi.org/10.1007/s41547-017-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-017-0009-9

Keywords

Navigation