Skip to main content

Advertisement

Log in

Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study was to evaluate specific effects of photodynamic therapy (energy density 15.8 J/cm2, 26.3 J/cm2 and 39.5 J/cm2) using methylene blue, toluidine blue and malachite green as photosensitizers and low-power laser irradiation on the viability of Candida albicans. Suspensions of C. albicans containing 106 cells/ml were standardized in a spectrophotometer. For each dye, 120 assays, divided into four groups according to the following experimental conditions, were carried out: laser irradiation in the presence of the photosensitizer; laser irradiation only; treatment with the photosensitizer only; no exposure to laser light or photosensitizer. Next, serial dilutions were prepared and seeded onto Sabouraud dextrose agar for the determination of the number of colony-forming units per milliliter (CFU/ml). The results were subjected to analysis of variance and the Tukey test (P < 0.05). Photodynamic therapy using the photosensitizers tested was effective in reducing the number of C. albicans.. The number of CFU/ml was reduced by between 0.54 log10 and 3.07 log10 and depended on the laser energy density used. Toluidine blue, methylene blue and malachite green were effective photosensitizers in antimicrobial photodynamic therapy against C. albicans, as was low-power laser irradiation alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Repentigny L, Aumont F, Bernard K, Belhumeur P (2000) Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun 68:3172–3179

    Article  PubMed  Google Scholar 

  2. Leung WK, Dassanayake RS, Yau JYY, Jin LJ, Yam WC, Samaranayake LP (2000) Oral colonization, phenotypic, and genotypic profiles of Candida species in irradiated, dentate, xerostomic nasopharyngeal carcinoma survivors. J Clin Microbiol 38:2219–2226

    CAS  PubMed  Google Scholar 

  3. Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata, an emerging oral opportunistic pathogen. J Dent Res 86:204–215

    Article  CAS  PubMed  Google Scholar 

  4. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335

    Article  CAS  PubMed  Google Scholar 

  5. Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    Article  CAS  PubMed  Google Scholar 

  6. Hannula J, Dogan B, Slots J, Okte E, Asikainen S (2001) Subgingival strains of Candida albicans in relation to geographical origin and occurrence of periodontal pathogenic bacteria. Oral Microbiol Immunol 16:113–118

    Article  CAS  PubMed  Google Scholar 

  7. Donnely RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12

    Article  Google Scholar 

  8. Pinto PM, Weikert-Oliveira RCB, Lyon JP et al (2008) In vitro antifungal susceptibility of clinical isolates of Candida spp. obtained from patients with different predisposing factors to candidosis. Microbiol Res 163:579–585

    Article  CAS  PubMed  Google Scholar 

  9. Donnelly RF, McCarron PA, Tunney MM, David-Woolfson A (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B Biol 86:59–69

    Article  CAS  Google Scholar 

  10. Romanova NA, Brovko LY, Moore L et al (2003) Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP bioluminescence. Appl Environ Microbiol 69:6393–6398

    Article  CAS  PubMed  Google Scholar 

  11. Wilson M, Dobson J, Harvey W (1992) Sensitization of oral bacteria to killing by low-power laser irradiation. Curr Microbiol 25:77–81

    Article  CAS  PubMed  Google Scholar 

  12. Wilson M, Dobson J (1993) Lethal photosensitization of oral anaerobic bacteria. Clin Infect Dis 16:414–415

    Google Scholar 

  13. Usacheva MN, Teichert MC, Biel MA (2001) Comparison of the methylene blue and toluidine blue O bacterial efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med 29:165–173

    Article  CAS  PubMed  Google Scholar 

  14. Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357

    Article  CAS  PubMed  Google Scholar 

  15. Teichert MC, Jones JW, Usacheva MN, Biel MA (2002) Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:155–160

    Article  CAS  PubMed  Google Scholar 

  16. Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B Biol 83:34–38

    Article  Google Scholar 

  17. Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112

    Article  PubMed  Google Scholar 

  18. Yamaoka K, Sasai R (2000) Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media. J Colloid Interface Sci 225:82–93

    Article  CAS  PubMed  Google Scholar 

  19. Kowaltowski AJ, Turin J, Indig GL, Vercesi AEC (1999) Mitochondrial effects of triarylmethane dyes. J Bioenerg Biomembr 31:581–590

    Article  CAS  PubMed  Google Scholar 

  20. Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    Article  CAS  PubMed  Google Scholar 

  21. Nikawa H, Yamashiro H, Makihira S et al (2003) In vitro cariogenic potential of Candida albicans. Mycoses 46:471–478

    Article  CAS  PubMed  Google Scholar 

  22. Jãrvensivu A, Hietanen J, Rautemma R, Sorsa T, Richardson M (2004) Candida yeast in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Periodont Oral Microbiol 10:106–112

    Google Scholar 

  23. Colombo AL, Barchiesi F, McGough DA, Rinaldi MG (1995) Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for azole antifungal susceptibility testing. J Clin Microbiol 33:535–540

    CAS  PubMed  Google Scholar 

  24. Pervaiz S (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617

    Article  CAS  PubMed  Google Scholar 

  25. Prates RA, Yamada AMJ, Suzuki LC et al (2007) Bacterial effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B Biol 86:70–76

    Article  CAS  Google Scholar 

  26. Hamblin MR, O’Donnel DA, Murty N et al (2002) Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49:941–951

    Article  CAS  PubMed  Google Scholar 

  27. Gad F, Zahra T, Hasan T, Hamblin MR (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria. Antimicrob Agents Chemother 48:2173–2178

    Article  CAS  PubMed  Google Scholar 

  28. Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V (2005) Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg 23:328–332

    Article  PubMed  Google Scholar 

  29. Wainwright M, Crossley KB (2002) Methylene blue—a therapeutic dye for all seasons. J Chemother 14:431–443

    CAS  PubMed  Google Scholar 

  30. Calzavara-Pinton PG, Venturini M, Sala RA (2005) A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. J Photochem Photobiol B Biol 78:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (grant 06/54896-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Campos Junqueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, R.C., Junqueira, J.C., Rossoni, R.D. et al. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans . Lasers Med Sci 25, 385–389 (2010). https://doi.org/10.1007/s10103-009-0706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0706-z

Keywords

Navigation