Skip to main content

Advertisement

Log in

Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate specific effects of photodynamic inactivation (PDI) using methylene blue as photosensitizer and low-power laser irradiation on the viability of single-, dual-, and three-species biofilms formed by C. albicans, S. aureus, and S. mutans. Biofilms were grown in acrylic discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. On the fifth day, the effects of the methylene blue (MB) photosensitizer at a concentration of 0.1 mg/ml for 5 min and InGaAlP laser (660 nm) for 98 s, alone and conjugated were evaluated. Next, the discs were placed in tubes with sterile physiological solution [0.9% sodium chloride (NaCl)] and sonicated for to disperse the biofilms. Ten-fold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then the numbers CFU/ml (log10) were counted and analyzed statistically (ANOVA, Tukey test, p < 0.05). Scanning electron microscopy (SEM) on discs treated with PDI and control biofilms groups was performed. Significant decreases in the viability of all microorganisms were observed for biofilms exposed to PDI mediated by MB dye. Reductions (log10) of single-species biofilms were greater (2.32–3.29) than the association of biofilms (1.00–2.44). Scanning electron microscopy micrographs suggested that lethal photosensitization occurred predominantly in the outermost layers of the biofilms. The results showed that PDI mediated by MB dye, might be a useful approach for the control of oral biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. doi:10.1126/science.284.5418.1318

    Article  PubMed  CAS  Google Scholar 

  2. Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, Koo H (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol. doi:257:50-56.10.1111/j.1574-6968.2006.00147.x

    Google Scholar 

  3. Hannula J, Dogan B, Slots J, Okte E, Asikainen S (2001) Subgingival strains of Candida albicans in relation to geographical origin and occurrence of periodontal pathogenic bacteria. Oral Microbiol Immunol 16:113–118. doi:10.1034/j.1399-302x.2001.016002113.x

    Article  PubMed  CAS  Google Scholar 

  4. Järvensivu A, Hietanen J, Rautemaa R, Sorsa T, Richardson M (2004) Candida yeast in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Periodon Oral Microbiol 10:106–112. doi:10.1046/j.1354-523X.2003.00978.x

    Google Scholar 

  5. Shen S, Samaranayake LP, Yip HK (2004) In vitro growth, acidogenicity and cariogenicity of predominant human root caries flora. J Dent 32:667–678. doi:10.1016/j.jdent.2004.07.002

    Article  PubMed  Google Scholar 

  6. Ooshima T, Osaka Y, Sasaki H, Osawa K, Yasuda H, Matsumura M, Sobue S, Matsumoto M (2000) Caries inhibitory activity of cacao bean husk extract in in vitro and animals experiments. Arch Oral Biol 45:639–645. doi:10.1016/S0003-9969(00)00042-X

    Article  PubMed  CAS  Google Scholar 

  7. Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638. doi:10.1128/EC.4.4.633-638.2005

    Article  PubMed  CAS  Google Scholar 

  8. Nikawa H, Hamada T, Yamashiro H, Murata H, Subiwahjudi A (1998) The effect of saliva or serum on Streptococcus mutans and Candida albicans colonization of hydroxyapatite beads. J Dent 26:31–37. doi:10.1016/S0300-5712(96)00076-0

    Article  PubMed  CAS  Google Scholar 

  9. Loberto JCS, Martins CAP, Santos SSF, Cortelli JR, Jorge AOC (2004) Staphylococcus spp. in the oral cavity and periodontal pockets of chronic periodontitis patients. Braz J Microbiol 35:64–68. doi:10.1590/S1806-83242006000300004

    Article  Google Scholar 

  10. Chokr A, Watier D, Eleaume H, Pangon B, Ghnassia JC, Mack D, Jabbouri S (2005) Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol 296:381–388. doi:10.1016/j.ijmm.2006.02.018

    Article  Google Scholar 

  11. Sader HS, Pignatari AC, Hollis RJ, Leme I, Jones RN (1993) Oxacillin and quinolone-resistant Staphylococcus aureus in São Paulo, Brazil: a multicenter molecular and epidemiology study. Infect Control Hosp Epidemiol 14:260–264

    Article  PubMed  CAS  Google Scholar 

  12. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105. doi:10.1007/978-3-540-75418-3

    Article  PubMed  CAS  Google Scholar 

  13. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. doi:10.1016/j.tim.2004.11.010

    Article  PubMed  CAS  Google Scholar 

  14. Wilson M (2004) Lethal photosensitization of oral bacteria and its potential application in the photodynamic therapy or oral infections. J Photochem Photobiol B Biol 3:412–418. doi:10.1039/b211266c

    Article  CAS  Google Scholar 

  15. Konan YN, Gurny R, Allémann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 66:89–106. doi:10.1016/S10111344(01)00267-6

    Article  CAS  Google Scholar 

  16. Zeina B, Greenman J, Purcell VM, Das B (2001) Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144:274–278. doi:10.1046/j.1365-2133.2001.04013.x

    Article  PubMed  CAS  Google Scholar 

  17. Dougherty TJ (2002) An update on photodynamic therapy applications. J Clin Laser Med Surg 20:3–7

    Article  PubMed  Google Scholar 

  18. Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J, Robinson C (1999) An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B Biol 50:1–7. doi:10.1016/S1011-1344(99)00056-1

    Article  CAS  Google Scholar 

  19. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. doi:10.1016/S0140-6736(01)05321-1

    Article  PubMed  CAS  Google Scholar 

  20. Skillman LC, Sutherland IW, Jones MV (1999) The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol 85:13S–18S

    Article  Google Scholar 

  21. Allison DG, Matthews MJ (1992) Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol 73:484–488. doi:10.1111/j.1365-2672.1992.tb05009.x

    PubMed  CAS  Google Scholar 

  22. Demidova TN, Hamblin MR (2005) Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl Environ Microbiol 71:6918–6925. doi:10.1128/AEM.71.11.6918-6925.2005

    Article  PubMed  CAS  Google Scholar 

  23. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterization of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B Biol 86:59–69. doi:10.1016/j.jphotobiol.2006.07.011

    Article  CAS  Google Scholar 

  24. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P (2008) Toluidine blue-mediated photodynamic effects on Staphylococcal biofilms. Antimicrob Agents Chemother 52:299–305. doi:10.1128/AAC.00988-07

    Article  PubMed  CAS  Google Scholar 

  25. Wood S, Metcalf D, Devine D, Robinson C (2006) Erytrosine is a potential for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57:680–684. doi:10.1093/jac/dkl021

    Article  PubMed  CAS  Google Scholar 

  26. Zanin IC, Gonçalves RB, Junior AB, Hope CK, Pratten J (2005) Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 56:324–330. doi:10.1093/jac/dki232

    Article  PubMed  CAS  Google Scholar 

  27. Qin Y, Luan X, Bi L, He G, Bai X, Zhou C, Zhang Z (2008) Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 23:49–54. doi:10.1007/s10103-007-0454-x

    Article  PubMed  Google Scholar 

  28. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner AC, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44:751–759. doi:10.1111/j.1600-0765.2008.01187.x

    Article  PubMed  CAS  Google Scholar 

  29. Mülller P, Guggenheim B, Schmidlin PR (2007) Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur J Oral Sci 115:77–80. doi:10.1111/j.1600-0722.2007.00418.x

    Article  Google Scholar 

  30. Calzavara-Pinton PG, Venturini M, Sala R (2005) A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. J Photochem Photobiol B Biol 78:1–6. doi:10.1016/j.jphotobiol.2004.06.006

    Article  CAS  Google Scholar 

  31. Wainwright M, Crossley KB (2002) Methylene blue - a therapeutic dye for all seasons. J Chemother 14:431–443

    PubMed  CAS  Google Scholar 

  32. Wilson M, Mia N (1993) Sensitization of Candida albicans to killing by low-power laser light. J Oral Pathol 22:354–357. doi:10.1111/j.1600-0714.1993.tb01088.x

    Article  CAS  Google Scholar 

  33. O’Neill JF, Hope CK, Wilson M (2002) Oral bacteria in multi-species biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med 31:86–90. doi:10.1002/lsm.10087

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Grant 09/52048-1). The authors Cristiane A. Pereira and Anna Carolina B. P. Costa are grateful to FAPESP by the scholarships provided (Processes 2010/00879-4 and 2009/12005-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Olavo Cardoso Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, C.A., Romeiro, R.L., Costa, A.C.B.P. et al. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26, 341–348 (2011). https://doi.org/10.1007/s10103-010-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0852-3

Keywords

Navigation