Skip to main content

Advertisement

Log in

Evaluation of micromorphological changes in tooth enamel after mechanical and ultrafast laser preparation of surface cavities

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this in vitro study was to evaluate the morphological changes that occur in tooth enamel after mechanical instrumentation and after femtosecond laser irradiation with different parameters via light and scanning electron microscopy (SEM). Twelve totally impacted third molars were collected and sectioned to provide several cut surfaces. These surfaces were exposed to infrared (λ = 795 nm, 120 fs, 1-kHz repetition rate, maximum mean power 1 W) laser pulses and machined by means of a conventional mechanical technique. Two very different geometrical patterns were performed with femtosecond laser pulses: shallow rectangular cavities and deep cylindrical ones. The results of both machining procedures were examined using light and scanning electron microscopy. The SEM images show the femtosecond laser ability to produce high-precision cavities in tooth enamel. No signs of collateral damage, burning, melting, or cracks were observed despite the far different laser pulse energies used (ranging from 7 to 400 μJ), unlike what is seen with conventional mechanical techniques. The femtosecond laser has the potential to become an optimal tool for the treatment of dental decay and as an alternative to the conventional drill to reduce mechanical damage during removal of the hard dental tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yaman BC, Guray BE, Dorter C, Gomeç Y, Yazıcıoglu O, Erdilek D (2011) Effect of the erbium:yttrium-aluminum-garnet laser or diamond bur cavity preparation on the marginal microleakage of class V cavities restored with different adhesives and composite systems. Lasers Med Sci 27(4):785–794

    Article  PubMed  Google Scholar 

  2. Anusavise KJ (1997) Efficacy of nonsurgical management of the initial caries lesion. J Dent Educ 6:895–905

    Google Scholar 

  3. Peters M, Mclean I (2001) Minimal intervention and concepts for minimally invasive cavity preparations. J Adhes Dent 3:7–16

    PubMed  CAS  Google Scholar 

  4. Colucci V, do Amaral FL, Pécora JD, Palma-Dibb RG, Corona SA (2009) Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues. Lasers Med Sci 24:811–818

    Article  PubMed  Google Scholar 

  5. Fornaini C, Riceputi D, Lupi-Pegurier L, Rocca JP (2012) Patient responses to Er:YAG laser when used for conservative dentistry. Lasers Med Sci (in press)

  6. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances II. Light microscopic and SEM investigations. Lasers Surg Med 9:345–351

    Article  PubMed  CAS  Google Scholar 

  7. Parker S (2007) Surgical lasers and hard dental tissue. Br Dent J 202:445–454

    Article  PubMed  CAS  Google Scholar 

  8. Lustosa-Pereira AC, Pozza DH, Cunha A, Dedavid BA, Duarte-de Moraes JF, Gerhardt-de Oliveira M (2011) Analysis of the morphology and composition of tooth apices apicectomized using three different ablation techniques. Med Oral Patol Oral Cir Bucal 16:225–230

    Article  Google Scholar 

  9. Firat E, Gurgan S, Gutknecht N (2012) Microtensile bond strength of an etch-and-rinse adhesive to enamel and dentin after Er:YAG laser pretreatment with different pulse durations. Lasers Med Sci 27:15–21

    Article  PubMed  Google Scholar 

  10. Ji L, Li L, Devlin H, Liu Z, Jiao J, Whitehead D (2011) Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum. Lasers Med Sci 27(1):197–204

    Article  PubMed  Google Scholar 

  11. Kim BM, Feit MD, Rubenchik AM, Joslin EJ, Celliers PM, Eichler J, Da Silva LB (2001) Influence of pulse duration on ultrashort laser pulse ablation of biological tissues. J Biomed Opt 6:332–338

    Article  PubMed  CAS  Google Scholar 

  12. Niemz MH, Kasenbacher A, Strassl M, Bäcker A, Beyerti A, Nickel D et al (2004) Tooth ablation using a CPA-free thin disk femtosecond laser system. Appl Phys B 79:269–271

    Article  CAS  Google Scholar 

  13. Zhang N, Wang W, Zhu X, Liu J, Xu K, Huang P, Zhao J, Li R, Wang M (2011) Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum. Opt Express 19:8870–8878

    Article  PubMed  Google Scholar 

  14. Pronko PP, Dutta SK, Squier SJ, Rudd JV, Du D, Mourou G (1995) Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt Commun 114:106–110

    Article  CAS  Google Scholar 

  15. Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys 63:109–115

    Article  Google Scholar 

  16. Varel H, Ashkenasi D, Rosenfeld A, Wähmer M, Campbell EEB (1997) Micromachining of quartz with ultrashort laser pulses. Appl Phys A 65:367–373

    Article  CAS  Google Scholar 

  17. Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov BN, Wellegehausen B, Welling H (1997) Ablation of metals by ultrashort laser pulses. J Optic Soc Am B 14:2716–2722

    Article  CAS  Google Scholar 

  18. Mourou G, Strickland D (1985) Compression of amplified chirped optical pulses. Opt Commun 55:447–449

    Article  Google Scholar 

  19. Vázquez de Aldana JR, Méndez C, Roso L, Moreno P (2005) Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments. J Phys D Appl Phys 38:2764–2768

    Article  Google Scholar 

  20. Girard B, Yu D, Armstrong MR, Wilson BC, Clokie CM, Miller RJ (2007) Effects of femtosecond laser irradiation on osseous tissues. Lasers Surg Med 39:273–285

    Article  PubMed  CAS  Google Scholar 

  21. Portillo M, Lorenzo MC, Sánchez JM, Peix M, Albaladejo A, García A et al (2012) Morphological alterations in dentine after mechanical treatment and ultrashort pulse laser irradiation. Lasers Med Sci 27:53–58

    Article  Google Scholar 

  22. Ji L, Li L, Devlin H, Liu Z, Jiao J, Whitehead D (2012) Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum. Lasers Med Sci 27:197–204

    Article  PubMed  Google Scholar 

  23. Ekworapoj P, Sdihu SK, McCabe JF (2007) Effect of different power parameters of Er, Cr:YSGG laser on human dentine. Lasers Med Sci 22:175–182

    Article  PubMed  Google Scholar 

  24. Kohns P, Zhou P, Stormann R (1997) Effective laser ablation of enamel and dentine without thermal side effects. J Laser Appl 9:171–174

    Article  PubMed  CAS  Google Scholar 

  25. Pike P, Parigger C, Splinter R, Lockhart P (2007) Temperature distribution in dental tissue after interaction with femtosecond laser pulses. Appl Opt 46:8374–8378

    Article  PubMed  Google Scholar 

  26. Rode AV, Gamaly EG, Luther-Davies B (2002) Subpicosecond laser ablation of dental enamel. J Appl Phys 92:2153–2158

    Article  CAS  Google Scholar 

  27. Rode AV, Gamaly EG, Luther-Davies B, Taylor B, Graessel TM, Dawes JM et al (2003) Precision ablation of dental enamel using a subpicosecond pulsed laser. Aust Dent J 48:233–239

    Article  PubMed  CAS  Google Scholar 

  28. Wieger V, Zoppel S, Wintner E (2007) Ultrashort pulse laser osteotomy. Laser Phys 17:438–442

    Article  Google Scholar 

  29. Girard B, Cloutier M, Wilson DJ, Clokie CMI, Miller RJD, Wilson BC (2007) Microtomographic analysis of healing of femtosecond laser bone calvaria wounds compared to mechanical instruments in mice with and without application of BMP-7. Lasers Surg Med 39:458–467

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.G. and P.M. acknowledge the support of Spanish Ministerio de Ciencia e Innovación through the Consolider Program SAUUL (CSD2007-00013) and research project FIS2009-09522, from Junta de Castilla y León through the Program for Groups of Excellence (GR27) and of the EC Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).We also acknowledge the support of the Centro de Laseres Pulsados, CLPU, Salamanca, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mª Cruz Lorenzo Luengo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luengo, M.C.L., Portillo, M., Sánchez, J.M. et al. Evaluation of micromorphological changes in tooth enamel after mechanical and ultrafast laser preparation of surface cavities. Lasers Med Sci 28, 267–273 (2013). https://doi.org/10.1007/s10103-012-1144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1144-x

Keywords

Navigation