Skip to main content

Advertisement

Log in

Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This paper reports an investigation into the characteristics of femtosecond laser (800-nm central wavelength) in the ablation of human dental enamel, dentine, and cementum at various laser fluences from 0.2 to 3.68 J/cm2 with single and multiple pulses. The femtosecond laser interaction with cementum is reported for the first time. Ablation thresholds were determined to be 0.58, 0.44, and 0.51 J/cm2 for enamel, dentine, and cementum, respectively. Under the average laser fluences of 1.13 to 3.68 J/cm2, clean ablated surfaces without debris and microcracks were obtained. Laser fluence was found to influence the ablated diameter and depth, whereas under a certain fluence, pulse number only affects the depth, without affecting the diameter. The ablation mechanism is found to be based on multi-photon absorption, not previously known for femtosecond laser ablation of dental materials. The low thermal loads of 0.708, 1.44, and 0.404 J/cm3 required for ablating enamel, dentine, and cementum, determined for the first time, are beneficial for minimizing the heat-affected zones and micro-damage. The Raman spectroscopic analysis of phosphate shows that the chemical components of the tooth remain intact before and after the fs-laser ablation. It also shows that different dental tissues respond differently to the laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chong T, Hong MH, Shi LP (2010) Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photon Rev 4(1):123–143

    Article  Google Scholar 

  2. Huang H, Guo ZX (2010) Ultrashort pulsed laser ablation and stripping of freeze-dried dermis. Lasers Med Sci 25:517–524

    Article  PubMed  Google Scholar 

  3. Alessandra MCA, Regina GPD, Jesus DP (2010) Composite filling removal with erbium:yttrium-aluminum-garnet laser: morphological analyses. Lasers Med Sci 25:1–7

    Google Scholar 

  4. Niemz MH (1995) Cavity preparation with the Nd:YLF picosecond laser. J Dent Res 74(5):1194–1199

    Article  PubMed  CAS  Google Scholar 

  5. Kimura YC, Wilder-Smith P, Arrastia-Jitosho AMA, Liaw LHL, Matsumoto K, Berns MW (1997) Effects of nanosecond pulsed Nd:YAG laser irradiation on dentin resistance to artificial caries-like lesions. Lasers Surg Med 20:15–21

    Article  PubMed  CAS  Google Scholar 

  6. Niemz MH (1998) Ultrashort laser pulses in dentistry: advantages and limitations. SPIE 3255:84–91

    Article  CAS  Google Scholar 

  7. Rohanizadeh R, LeGeros RZ, Fan D, Jean A, Daculsil G (1999) Ultrastructural properties of laser-irradiated and heat-treated dentin. J Dent Res 78(12):1829–1835

    Article  PubMed  CAS  Google Scholar 

  8. Alexander R, Xie J, Fried D (2002) Selective removal of residual composite from dental enamel surfaces using the third harmonic of a Q-switched Nd:YAG laser. Lasers Surg Med 30:240–245

    Article  PubMed  Google Scholar 

  9. Wheeler CR, Fried D, Featherstone JDB, Watanabe LG, Le CQ (2003) Irradiation of dental enamel with Q-switched λ = 355 nm laser pulses: surface morphology, fluoride adsorption, and adhesion to composite resin. Lasers Surg Med 32:310–317

    Article  PubMed  Google Scholar 

  10. Reza B, Jamshid P, Norbert G, Friedrich L, Maziar M (2007) Comparative evaluation of the effects of Nd:YAG and Er:YAG laser in dentin hypersensitivity treatment. Lasers Med Sci 22:21–24

    Article  Google Scholar 

  11. Serafetinides AA, Khabbaz MG, Makropoulou MI, Kar AK (1999) Picosecond laser ablation of dentine in endodontics. Lasers Med Sci 14:168–174

    Article  Google Scholar 

  12. Lüko W, Andrea H, Mark HN, Thomas P (1996) Preparation of dental hard tissue with picosecond laser pulses. Lasers Med Sci 11:45–51

    Article  Google Scholar 

  13. Rode AV, Madsen NR, Kolev VZ, Gamaly EG, Luther-Davies B (2004) Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis. Commercial and biomedical applications of ultrafast lasers IV. Proceedings of SPIE 5340:76–86

    Article  Google Scholar 

  14. Krüger J, Kautek W, Newsely H (1999) Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite. Appl Phys A 69(Suppl):S403–S407

    Google Scholar 

  15. Serbin J, Bauer T, Fallnich C, Kasenbacher A, Arnold WH (2002) Femtosecond lasers as novel tool in dental surgery. Appl Surf Sci 197–198:737–740

    Article  Google Scholar 

  16. Lizarelli RFZ, Costa MM, Carvalho-Filho E, Nunes FD, Bagnato VS (2007) Selective ablation of dental enamel and dentin using femtosecond laser pulses. Laser Phys Lett 5:63–69

    Article  Google Scholar 

  17. Kohns P, Zhou P, Störmann R (1997) Effective laser ablation of enamel and dentine without thermal side effects. J Laser Appl 9(3):171–174

    PubMed  CAS  Google Scholar 

  18. Pavlina P, Christian P, Robert S, Peter L (2007) Temperature distribution in dental tissue after interaction with femtosecond laser pulses. Appl Opt 46:8374–8378

    Article  Google Scholar 

  19. Holger L, Alexander H, Fabian W, Ajoy IS, Jesper S, Andreas O, Omid K, Ralf H, Herbert W, Wolfgang E (2003) Medical applications for ultrafast laser pulses. Riken Rev 50:113–118

    Google Scholar 

  20. Yousif A, Strassl M, Beer F, Verhagen L, Wittschier M, Wintner E (2007) Ultra-short pulse laser processing of hard tissue, dental restoration materials, and biocompatibles. Therapeutic Laser Application and Laser-Tissue Interactions III, SPIE-OSA Biomedical Optics. SPIE 6632:663203-1–9

    Google Scholar 

  21. Tetsuo I, Yoshio H, Keiji F, Kan N, Masayo M, Takanori K, Chen JR (2006) Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction. Dent Mater J 25(4):733–736

    Article  Google Scholar 

  22. Keiji F, Akihiro T, Kan N, Tetsuo I, Yoshio H (2008) Data recording on dental prostheses for personal identification. Jpn J Appl Phys 47(9):7190–7194

    Article  Google Scholar 

  23. Losee FL, Jennings WH, Lawson ME Jr, Forziati AF (1957) Microstructure of the human tooth: A. the dentinoenamel junction. J Dent Res 36:911–921

    Article  PubMed  CAS  Google Scholar 

  24. Pettit FH, Sauerbrey R (1993) Pulsed ultraviolet laser ablation. Appl Phys A 56:51–63

    Article  Google Scholar 

  25. Schmidt MJJ, Li L, Spencer JT (2001) Removal of chlorinated rubber coatings from concrete surfaces using and RF excited CO2 laser. J Mater Process Technol 114:139–144

    Article  CAS  Google Scholar 

  26. Kautek MS, Krüger WH, Grabner G (1994) Femtosecon-pulse laser ablation of human corneas. Appl Phys A 58:513–518

    Article  Google Scholar 

  27. Salazar MPG, Gasga JR (2003) Microhardness and chemical composition of human tooth. Mater Res 3:367–373

    Google Scholar 

  28. René F, Marcella E-O, Jörg M, Anja W, Leon V, Friedrich L, Norbert G (2009) Decontamination of deep dentin by means of erbium, chromium: yttrium scandium-gallium-garnet laser irradiation. Lasers Med Sci 24:75–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, L., Li, L., Devlin, H. et al. Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum. Lasers Med Sci 27, 197–204 (2012). https://doi.org/10.1007/s10103-011-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0932-z

Keywords

Navigation