Skip to main content

Advertisement

Log in

Effect of different power parameters of Er,Cr:YSGG laser on human dentine

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the optimal power setting of an Er,Cr:YSGG laser for cutting human dentine to produce a surface that remains suitable as a foundation on which to build and bond a dental restoration. The cutting efficiency and resulting microhardness of the dentine were evaluated for various laser power settings, and representative samples were examined by SEM. The microhardness of the dentine was significantly reduced by 30–50% (p < 0.05, paired t test) after laser irradiation, irrespective of the power setting used. The mean ablation efficiency increased in proportion to the power setting of the laser. Although the laser power setting did not affect the extent of reduction in microhardness, it did affect the microstructure of human dentine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin S, Caputo AA, Eversole LR, Rizoiu I (1999) Topographical characteristics and shear bond strength of tooth surface cut with a laser-powered hydrokinetic system. J Prosthet Dent 82:451–455

    Article  PubMed  CAS  Google Scholar 

  2. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  Google Scholar 

  3. Ceballos L, Osorio R, Toledano M, Marshall GW (2001) Microleakage of composite restorations after acid or Er-YAG laser cavity treatment. Dent Mater 17:340–346

    Article  PubMed  CAS  Google Scholar 

  4. Fried D (2000) IR laser ablation of dental enamel. Proc SPIE 3910:136–138

    Article  CAS  Google Scholar 

  5. Meister J, Franzen R, Forner K, Grebe H (2006) Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers. J Biomed Opt 11:0340301–0340307

    Article  Google Scholar 

  6. Kim KS, Kim ME, Shin EJ (2005) Irradiation time and ablation rate of enamel in contact and non-contact irradiation with Er:YAG laser. Photomed Laser Surg 23:216–218

    Article  PubMed  CAS  Google Scholar 

  7. Serebo L, Segal T, Nordenberg D, Gorfil C, Bar-Lev M (1987) Examination of tooth pulp following laser beam irradiation. Lasers Surg Med 7:236–239

    Article  Google Scholar 

  8. Malmstrom HS, McCormack SM, Fried D, Featherstone JD (2001) Effect of CO2 laser on pulpal temperature and surface morphology: an in vitro study. J Dent 29:521–529

    Article  PubMed  CAS  Google Scholar 

  9. Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1303–1308

    Article  Google Scholar 

  10. Corona SAM, Borsatto MC, Pecora JD, De SA Rocha RA, Ramos TS, Palma-Dibb RG (2003) Assessing microleakage of different class V restoration after Er:YAG laser and our preparation. J Oral Rehabil 30:1008–1014

    Article  PubMed  CAS  Google Scholar 

  11. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Laser Surg Med 9:338–344

    Article  CAS  Google Scholar 

  12. Hossain M, Nakamura Y, Tamaki Y, Yamada Y, Murakami Y, Matsumoto K (2003) Atomic analysis and Knoop hardness measurement of the cavity floor prepared by Er,Cr:YSGG laser irradiation in vitro. J Oral Rehabil 30:515–521

    Article  PubMed  CAS  Google Scholar 

  13. Angker L, Swain MV, Kilpatrick N (2005) Characterising the micro-mechanical behavior of the carious dentine of primary teeth using nano-indentation. J Biomech 38:1535–1542

    Article  PubMed  Google Scholar 

  14. Fuentes V, Ceballos L, Osorio R, Toledano M, Carvalho RM, Pashley D (2004) Tensile strength and microhardness of treated human dentin. Dent Mater 20:522–529

    Article  PubMed  CAS  Google Scholar 

  15. Harashima T, Knoshita J, Kimura Y, Brugnera A Jr, Zanin F, Pecora JD, Matsumoto K (2005) Morphological comparative study on ablation of dental hard tissues at cavity preparation by Er:YAG and Er,Cr:YSGG lasers. Photomed Laser Surg 23:52–55

    Article  PubMed  Google Scholar 

  16. Mahoney E, Holt A, Swain M, Kilpatrick N (2000) The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent 20:589–594

    Article  Google Scholar 

  17. Angker L, Swain MV, Kilpatrick N (2003) Micro-mechanical characterisation of the properties of primary tooth dentine. J Dent 31:261–267

    Article  PubMed  Google Scholar 

  18. Kameyama A, Oda Y, Kawada E, Takizawa M (2001) Resin bonding to Er:YAG laser-irradiated dentin: combined effects of pre-treatment with citric and glutaraldehyde. Eur J Oral Sci 109:354–360

    Article  PubMed  CAS  Google Scholar 

  19. Senawongse P, Otsuki M, Tagami J, Mjor I (2006) Age-related changes in hardness and modulus of elasticity of dentine. Arch Oral Biol 51:457–463

    Article  PubMed  Google Scholar 

  20. Bachmann L, Diebolder R, Hibst R, Zezell DM (2005) Changes in chemical composition and collagen structure of dentine tissue after erbium laser irradiation. Spectrochim Acta Part A Mol Biomol Spectrosc 61:2634–2639

    Article  Google Scholar 

  21. Chng HK, Ramli HN, Yap AUJ, Lim CT (2005) Effect of hydrogen peroxide on intertubular dentine. J Dent 33:363–369

    Article  PubMed  CAS  Google Scholar 

  22. Fried D, Visuri SR, Featherstone JDB, Walsh JT, Seka W, Glena RE, McCormack SM, Wigdor HA (1996) Infrared radiometry of dental enamel during Er:YAG and Er:YSGG laser irradiation. J Biomed Opt 1:455–465

    Article  Google Scholar 

  23. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Matsumoto N, Matsumoto K (1999) Effects of Er, Cr:YSGG laser irradiation in human enamel and dentine: ablation and morphological studies. J Clin Laser Med Surg 17:155–159

    PubMed  CAS  Google Scholar 

  24. Marquez F, Quintana E, Roca I, Salgado J (1993) Physical–mechanical effects of Nd:YAG laser of sound dentine and enamel. Biomaterials 14:313

    Article  PubMed  CAS  Google Scholar 

  25. Konishi N, Fried D, Staninec M, Featherstone JD (1999) Artificial caries removal and inhibition of artificial secondary caries by pulsed CO2 laser irradiation. Am J Dent 12:213

    PubMed  CAS  Google Scholar 

  26. Kuramoto M, Matson E, Turbino ML, Marques RA (2001) Microhardness of Nd:YAG laser irradiated enamel surface. Braz Dent J 12:31–33

    Google Scholar 

  27. Lee BS, Lin CP, Lin FH, Li UM, Lan WH (2003) Effect of Nd:YAG laser irradiation on hardness and elastic modulus of human dentin. J Clin Laser Med Surg 21:41–46

    Article  PubMed  Google Scholar 

  28. Featherstone JDB, Nelson DGA (1987) Laser effects on dental hard tissues. Adv Dent Res 1:21–26

    PubMed  CAS  Google Scholar 

  29. Rizoiu IM, DeShazer LG (1994) New laser–matter interaction concept to enhance hard tissue cutting efficiency. Laser Interact V 2134:309–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyanart Ekworapoj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekworapoj, P., Sidhu, S.K. & McCabe, J.F. Effect of different power parameters of Er,Cr:YSGG laser on human dentine. Lasers Med Sci 22, 175–182 (2007). https://doi.org/10.1007/s10103-006-0426-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-006-0426-6

Keywords

Navigation