Skip to main content
Log in

The impact of white matter hyperintensities on speech perception

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The presence of white matter hyperintensities (WMHs) can impact on normal brain function by altering normal signal transmission and determining different symptoms.

Aim

To evaluate the relationship between the presence of brain WMHs and the scores of speech perception test (SPT) in a sample of normal-hearing patients under 70 years of age.

Material and method

Prospective study. One hundred eleven patients underwent audiological screening with pure tone audiometry (PTA), tympanometry, speech perception testing (SPT), and brain magnetic resonance imaging (MRI). T2 sequences were analyzed to identify the presence of WMH that, if identified, were scored using the Fazekas score. Statistical multiple regression analysis was performed to understand the relationship between PTA and SPT score; the Pearson's and Spearman's tests were used to evaluate the correlation between Fazekas scores and SPT. Chi-square test was used to analyze the difference between gender.

Results

The results of PTA were not predictive of the SPT score. A negative statistically significant correlation (Spearman's, p = 0.0001; Pearson's, p < 0.001) was identified between the Fazekas score and the results of SPT. No statistically significant differences were identified in the correlation of WMH and SPT between males and females.

Conclusion

Multiple WMHs in the brain can worsen word recognition in patients with normal auditory threshold; this may be related to the impact that these lesions have on the memory ability. Spread of lesions into the brain might reduce the brain capacity to remember words, despite the sound is correctly perceived by the ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altamura C, Scrascia F, Quattrocchi CC, Errante Y, Gangemi E, Curcio G, Ursini F, Silvestrini M, Maggio P, Beomonte Zobel B, Rossini PM, Pasqualetti P, Falsetti L, Vernieri F (2016) Regional MRI diffusion, white-matter hyperintensities, and cognitive function in Alzheimer’s disease and vascular dementia. J Clin Neurol 12:201–208. https://doi.org/10.3988/jcn.2016.12.2.20

    Article  Google Scholar 

  2. Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Van Vlierberghe E, Van Hecke W, Searle G, Santos-Ribeiro A, Matthews PM (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain. 140:2927–2938. https://doi.org/10.1093/brain/awx22

    Article  Google Scholar 

  3. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828

    Article  CAS  Google Scholar 

  4. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 341:c3666. https://doi.org/10.1136/bmj.c3666

    Article  Google Scholar 

  5. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW (1988) Brain MR: pathologic correlation with gross and histopathology. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 151:559–566

    Article  CAS  Google Scholar 

  6. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, Haydon PG, Coulter DA (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591. https://doi.org/10.1038/nn.2535]

    Article  CAS  Google Scholar 

  7. Eckert MA, Kuchinsky SE, Vaden KI, Cute SL, Spampinato MV, Dubno JR (2013) White matter hyperintensities predict low frequency hearing in older adults. J Assoc Res Otolaryngol 14:425–433. https://doi.org/10.1007/s10162-013-0381-4

    Article  Google Scholar 

  8. Di Stadio A, Dipietro L, Toffano R, Burgio F, De Lucia A, Ippolito V, Garofalo S, Ricci G, Martines F, Trabalzini F, Della Volpe A (2018) Working memory function in children with single side deafness using a bone-anchored hearing implant: a case-control study. Audiol Neurootol 23:238–244. https://doi.org/10.1159/000493722

    Article  Google Scholar 

  9. Lin FR, Yaffe K, Xia J, Xue QL, Harris TB, Purchase-Helzner E, Satterfield S, Ayonayon HN, Ferrucci L, Simonsick EM, Health ABC Study Group (2013) Hearing loss and cognitive decline in older adults. JAMA Intern Med 173:293–299. https://doi.org/10.1001/jamainternmed.2013.1868

    Article  Google Scholar 

  10. Marslen-Wilson WD, Tyler LK (1981) Central process in speech understanding. Philos Trans R Soc Lond B 295:317–332

    Article  Google Scholar 

  11. Lyu B, Choi HS, Marslen-Wilson WD, Clarke A, Randall B, Tyler LK (2019) Neural dynamics of semantic composition. Proc Natl Acad Sci U S A 116:21318–21327. https://doi.org/10.1073/pnas.1903402116

    Article  CAS  Google Scholar 

  12. Fusconi M, Attanasio G, Capitani F, Di Porto E, Diacinti D, Musy I, Ralli M, Ralli G, Greco A, de Vincentiis M, Colonnese C (2019) Is there a relation between sudden sensorineural hearing loss and white matter lesions? Eur Arch Otorhinolaryngol 276:3043–3049. https://doi.org/10.1007/s00405-019-05593-4

    Article  Google Scholar 

  13. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356

    Article  CAS  Google Scholar 

  14. Ciorba A, Bianchini C, Crema L, Ceruti S, Ermili F, Aimoni C, Pelucchi S (2019) White matter lesions and sudden sensorineural hearing loss. J Clin Neurosci 65:6–10. https://doi.org/10.1016/j.jocn.2019.04.037

    Article  Google Scholar 

  15. Katz J (2014). Handbook of clinical audiology. Lippincott Williams and Wilkins; 7th international edition edition

  16. Popper AN, Richard RFRF (1992) The mammalian auditory pathway: neurophysiology. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-2838-7

    Book  Google Scholar 

  17. Goswami U (2012) Phonological representation. In: Seel NM (ed) Encyclopedia of the sciences of learning. Springer, Boston, MA

    Google Scholar 

  18. Ramezani M, Lotfi Y, Moossavi, Bakhshi E (2019) Auditory brainstem response to speech in children with high functional autism spectrum disorder. Neurol Sci 40(1):121–125. https://doi.org/10.1007/s10072-018-3594-9

    Article  Google Scholar 

  19. Nishiyama R, Hirano T, Ukita J (2017) Usage of semantic representations in recognition memory. Memory. 25(10):1412–1424. https://doi.org/10.1080/09658211.2017.1310252

    Article  Google Scholar 

  20. Koeritzer MA, Rogers CS, Van Engen KJ, Peelle JE (2018) The impact of age, background noise, semantic ambiguity, and hearing loss on recognition memory for spoken sentences. J Speech Lang Hear Res 61(3):740–751. https://doi.org/10.1044/2017_JSLHR-H-17-0077

    Article  Google Scholar 

  21. Trotta L, Lamoureux D, Bartolomeo P, Migliaccio R (2019) Working memory in posterior cortical atrophy. Neurol Sci 40(8):1713–1716. https://doi.org/10.1007/s10072-019-03869-5

    Article  Google Scholar 

  22. Smirni D, Smirni P, Di Martino G, Cipolotti L, Oliveri M, Turriziani P (2018) Standardization and validation of a parallel form of the verbal and non-verbal recognition memory test in an Italian population sample. Neurol Sci 39(8):1391–1399. https://doi.org/10.1007/s10072-018-3433-z

    Article  Google Scholar 

  23. Merchant SS, Nadol JB (2010) Schuknecht’s pathology of the ear. PMPH, USA

    Google Scholar 

  24. Ellis RJ, Munro KJ (2013) Does cognitive function predict frequency compressed speech recognition in listeners with normal hearing and normal cognition? Int J Audiol 52:14–22. https://doi.org/10.3109/14992027.2012.721013

    Article  Google Scholar 

  25. Woods DL, Doss Z, Herron TJ, Arbogast T, Younus M, Ettlinger M, Yund EW (2015) Speech perception in older hearing-impaired listeners: benefits of perceptual training. PLoS One 10:e0113965. https://doi.org/10.1371/journal.pone.0113965

    Article  CAS  Google Scholar 

  26. Amos NE, Humes LE (2007) Contribution of high frequencies to speech recognition in quiet and noise in listeners with varying degrees of high-frequency sensorineural hearing loss. J Speech Lang Hear Res. 50:819–834

    Article  Google Scholar 

  27. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S (2015) What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 4:001140. https://doi.org/10.1161/JAHA.114.001140

    Article  Google Scholar 

  28. Sarbu N, Shih RY, Jones RV, Horkayne-Szakaly I, Oleaga L, Smirniotopoulos JG (2016) White matter diseases with radiologic-pathologic correlation. Radiographics. 36:1426–1447. https://doi.org/10.1148/rg.2016160031

    Article  Google Scholar 

  29. Hainsworth AH, Minett T, Andoh J, Forster G, Bhide I, Barrick TR, Elderfield K, Jeevahan J, Markus HS, Bridges LR (2017) Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia. Stroke. 48:2799–2804. https://doi.org/10.1161/STROKEAHA.117.018101

    Article  Google Scholar 

  30. Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G (2010) The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 17:1083–1091. https://doi.org/10.1038/cdd.2009.179

    Article  CAS  Google Scholar 

  31. Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D'Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452. https://doi.org/10.1523/JNEUROSCI.5804-08.2009

    Article  CAS  Google Scholar 

  32. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    Article  Google Scholar 

  33. Branco M, Ruano L, Portaccio E, Goretti B, Niccolai C, Patti F, Chisari C, Gallo P, Grossi P, Ghezzi A, Roscio M, Mattioli F, Bellomi F, Simone M, Viterbo RG, Amato MP (2019) Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol Sci 40(8):1651–1657. https://doi.org/10.1007/s10072-019-03875-7

    Article  Google Scholar 

  34. Samson Y, Belin P, Thivard L, Boddaert N, Crozier S, Zilbovicius M (2001) Auditory perception and language: functional imaging of speech sensitive auditory cortex. Rev Neurol (Paris) 157(8–9 Pt 1):837–846

    CAS  Google Scholar 

  35. Rolheiser T, Stamatakis EA, Tyler LK (2011) Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule. J Neurosci 31(47):16949–16957. https://doi.org/10.1523/JNEUROSCI.2725-11.2011

    Article  CAS  Google Scholar 

  36. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122(2):250–261. https://doi.org/10.3171/2014.10.JNS132647

    Article  Google Scholar 

  37. Kim D, Lee S, Choi M, Youn H, Suh S, Jeong HG, Han CE (2019) Diffusion tensor imaging reveals abnormal brain networks in elderly subjects with subjective cognitive deficits. Neurol Sci 40(11):2333–2342. https://doi.org/10.1007/s10072-019-03981-6

    Article  Google Scholar 

  38. Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia. 51(10):1814–1822. https://doi.org/10.1016/j.neuropsychologia.2013.06.007

    Article  Google Scholar 

  39. Seaquist ER (2015) The impact of diabetes on cerebral structure and function. Psychosom Med 77:616–621. https://doi.org/10.1097/PSY.0000000000000207

    Article  CAS  Google Scholar 

  40. Fujishima M, Ibayashi S, Fujii K, Mori S (1995) Cerebral blood flow and brain function in hypertension. Hypertens Res 18:111–117

    Article  CAS  Google Scholar 

  41. Martín MG, Pfrieger F, Dotti CG (2014) Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 15:1036–1052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Di Stadio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (IRB of Policlinico Umberto I, Sapienza University of Rome, Department of Sense Organs) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Stadio, A., Messineo, D., Ralli, M. et al. The impact of white matter hyperintensities on speech perception. Neurol Sci 41, 1891–1898 (2020). https://doi.org/10.1007/s10072-020-04295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04295-8

Keywords

Navigation