Skip to main content
Log in

The curvature quantification of wave I in auditory brainstem responses detects cochlear synaptopathy in human beings

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test–retest reliability to detect cochlear synaptopathy in aging humans.

Methods

Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed.

Results

A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10–16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold.

Conclusion

The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans  and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [LZ], upon reasonable request.

References

  1. Agrawal Y, Platz EA, Niparko JK (2008) Prevalence of hearing loss and differences by demographic characteristics among US adults: data from the national health and nutrition examination survey, 1999–2004. Arch Inten Med 168(14):1522–1530. https://doi.org/10.1001/archinte.168.14.1522

    Article  Google Scholar 

  2. Burkard RF, Sims D (2002) A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults. Am J Audiol 11(1):12–22. https://doi.org/10.1044/1059-0889(2002/004)

    Article  PubMed  Google Scholar 

  3. Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112:1025–1039. https://doi.org/10.1152/jn.00738.2013

    Article  CAS  PubMed  Google Scholar 

  4. British Society of Audiology (2004) Recommended procedure: pure tone air and bone conduction threshold audiometry with and without masking and determination of uncomfortable loudness levels

  5. Bharadwaj HM, Mai AR, Simpson JM, Choi I, Heinz MG, Shinn-Cunnigham BG (2019) Non-invasive assays of cochlear synaptopathy-candidates and considerations. Neuroscience 407:53–66. https://doi.org/10.1016/j.neuroscience.2019.02.031

    Article  CAS  PubMed  Google Scholar 

  6. Bramhall N, Beach EF, Epp B, Le Prell CG, Lopez-Poveda EA, Plack CJ, Schaette R, Verhulst S, Canlon B (2019) The search for noise-induced cochlear synaptopathy in humans: mission impossible? Hear Res 377:88–103. https://doi.org/10.1016/j.heares.2019.02.016

    Article  PubMed  Google Scholar 

  7. Bramhall NF (2021) Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. J Acoust Soc Am 150(6):4440. https://doi.org/10.1121/10.0007484

    Article  PubMed  Google Scholar 

  8. Bao J, Jegede SL, Hawks JW, Dade B, Guan Q, Middaugh S, Qiu Z, Levina A, Tsai TH (2022) Detecting cochlear synaptopathy through curvature quantification of the auditory brainstem response. Front Cell Neurosci 16:851500. https://doi.org/10.3389/fncel.2022.851500

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ciorba A, Bianchini C, Pelucchi S, Pastore A (2012) The impact of hearing loss on the quality of lie of elderly adults. Clin Interv Aging 7:159–163. https://doi.org/10.2147/CIA.S26059

    Article  PubMed  PubMed Central  Google Scholar 

  10. Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110(3):577–586. https://doi.org/10.1152/jn.00164.2013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez KA, Jeffers PWC, Lall K, Liberman MC (2015) Aging after noise exposure: acceleration of cochlear synaptopathy in ‘recovered’ ears. J Neurosci 35(19):7509–7520. https://doi.org/10.1523/JNEUROSCI.5138-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez KA, Guo D, Micucci S, Gruttola VD, Liberman MC, Kujawa SG (2020) Noise-induced cochlear synaptopathy with and without sensory cell loss. Neuroscience 427:43–57. https://doi.org/10.1016/j.neuroscience.2019.11.051

    Article  CAS  PubMed  Google Scholar 

  13. Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13(6):819–833. https://doi.org/10.1007/s10162-012-0344-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grinn SK, Wisemann KB, Baker JA, Le Prell CG (2017) Hidden Hearing loss? No effect of commen recreational noise exposure on cochlear nerve response amplitude in humans. Front Neurosci 11:465. https://doi.org/10.3389/fnins.2017.00465

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guest H, Munro KJ, Prendergast G, Millman RE, Plack CJ (2018) Impaired speech perception in noise with a normal audiogram: no evidence for cochlear synaptopahty and no relation to lifetime noise exposure. Hear Res 364:142–151. https://doi.org/10.1016/j.heares.2018.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harris KC, Vaden KI Jr, McClaskey CM, Dias JW, Dubno JR (2018) Complementary metrics of human auditory nerve function derived from compound action potentials. J Neurophysiol 119(3):1019–1028. https://doi.org/10.1152/jn.00638.2017

    Article  PubMed  Google Scholar 

  17. Harris KC, Ahlstrom JB, Dias JW, Kerouac LB, McClaskey CM, Dubno JR, Eckert MA (2021) Neural presbyacusis in humans inferred from aged-related differences in auditory nerve function and structure. J Neurosci 41(50):10293–10304. https://doi.org/10.1523/JNEUROSCI.1747-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris KC, Bao J (2022) Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. J Acoust Soc Am 151(4):2802. https://doi.org/10.1121/10.0010317

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson TA, Cooper S, Stamper GC, Chertoff M (2017) Noise exposure questionnaire: a tool for quantifying annual noise exposure. J Am Acad Audiol 28(1):14–35. https://doi.org/10.3766/jaaa.15070

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johannesen PT, Buzo BC, Lopez-Poveda EA (2019) Evidence for aged-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hear Res 374:35–48. https://doi.org/10.1016/j.heares.2019.01.017

    Article  PubMed  Google Scholar 

  21. Kobel M, Le Prell CG, Liu J, Hawks JW, Bao J (2017) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res 349:148–154. https://doi.org/10.1016/j.heares.2016.12.008

    Article  PubMed  Google Scholar 

  22. Kujawa SG, Libermann MC (2009) Adding insult to injury: cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci 29(45):14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330(Pt B):191–199. https://doi.org/10.1016/j.heares.2015.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kujawa SG, Liberman MC (2019) Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear Res 377:44–52. https://doi.org/10.1016/j.heares.2019.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kohrman DC, Wan G, Cassinotti L, Corfas G (2020) Hidden hearing loss: a disorder with multiple etiologies and mechanisms. Cold Spring Harb Persepect Med 10(1):a035493. https://doi.org/10.1101/cshperspect.a035493

    Article  CAS  Google Scholar 

  26. Libermann MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72(5):1441–1449. https://doi.org/10.1121/1.388677

    Article  Google Scholar 

  27. Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241. https://doi.org/10.1126/science.7079757

    Article  CAS  PubMed  Google Scholar 

  28. Liberman MC (1988) Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal. Hear Res 34:179–192. https://doi.org/10.1016/0378-5955(88)90105-0

    Article  CAS  PubMed  Google Scholar 

  29. Liberman MC, Liberman LD, Maison SF (2014) Effect feedback slows cochlear aging. J Neurosci 34(13):4599–4607. https://doi.org/10.1523/JNEUROSCI.4923-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11(9):e0162726. https://doi.org/10.1371/journal.pone.0162726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147. https://doi.org/10.1016/j.heares.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luck SJ (2014) An introduction to the event-related potential technique, Second Edition. Cambridge, Massachusetts, MIT Press

  33. Lobarinas E, Spankovich C, Le Prell GC (2017) Evidence of , hidden hearing loss‘ following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hear Res 349:155–163. https://doi.org/10.1016/j.heares.2016.12.009

    Article  PubMed  Google Scholar 

  34. Merchan-Perez A, Liberman MC (1996) Ultrastructural differences among afferent synapses on cochlear hair cells: correlations with spontaneous discharge rate. J Comp Neurol 371:208–221. https://doi.org/10.1002/(SICI)1096-9861(19960722)371:2%3c208::AIDF-CNE2%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  35. Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: identified cell populations. Hear Res 93(1–2):52–71. https://doi.org/10.1016/0378-5955(95)00200-6

    Article  CAS  PubMed  Google Scholar 

  36. Motohashi R, Takumida M, Shimizu A, Konomi J, Fujita K, Hirakawa K, Suzuki M, Anniko M (2010) Effects of age and sex on the expression of estrogen receptor alpha and beta in the mouse inner ear. Acta Otolaryngol 130(2):204–214. https://doi.org/10.3109/00016480903016570

    Article  CAS  PubMed  Google Scholar 

  37. Marano RJ, Tickner J, Redmond SL (2013) Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss. PLoS ONE 8(5):e63952. https://doi.org/10.1371/journal.pone.0063952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33(13):5542–5552. https://doi.org/10.1523/JNEUROSCI.5027-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McClaskey CM, Panganiban CH, Noble KV, Dias JW, Lang H, Harris KC (2020) A multi-metric approach to characterizing mouse peripheral audiotry nerve fuction using the auditory brainstem response. J Neurosci Methods 346:108937

    Article  PubMed  PubMed Central  Google Scholar 

  40. McFarlane KA, Sanchez JT (2023) Exploring electrode placements to optimize the identification and measurement of early auditory evoked potentials. Audio Res 13(6):978–988. https://doi.org/10.3390/audiolres13060085

    Article  Google Scholar 

  41. Nolan LS (2020) Age-related hearing loss: why we need to think about sex as a biological variable. J Neurosci Res 98(9):1705–1720

    Article  CAS  PubMed  Google Scholar 

  42. Osborne J.M., Cook W., Bossé M.J., 2019. Quantifying the curvature of curves: an intuitive introduction to differential geometry. PRIMUS. 0(0): 1–21. Doi: https://doi.org/10.1080/10511970.2019.1636432.

  43. Plack CJ, Leger A, Prendergast G, Kluk K, Guest H, Munro KJ (2016) Toward a diagnostic test for hidden hearing loss. Trends Hear. https://doi.org/10.1177/2331216516657466

    Article  PubMed  PubMed Central  Google Scholar 

  44. Park C, Kim SJ, Lee WK, Moon SK, Kwak S, Choe SK, Park R (2016) Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss. Biochem Biophys Res Commun 478(4):1667–1673. https://doi.org/10.1016/j.bbrc.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  45. Starr A, Sininger YS, Pratt H (2000) The varieties of auditory neuropathy. J Basic Clin Physiol Pharmacol 11:215–230. https://doi.org/10.1515/jbcpp.2000.11.2.215

    Article  CAS  PubMed  Google Scholar 

  46. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci Off J Soc Nurosci 31:13452–13457. https://doi.org/10.1523/JNEUROSCI.2156-11.2011

    Article  CAS  Google Scholar 

  47. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33(34):13686–13694. https://doi.org/10.1523/JNEUROSCI.1783-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16(6):727–745. https://doi.org/10.1007/s10162-015-0539-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spankovich C, Le Prell CG, Lobarinas E, Hood LJ (2017) Noise history and auditory function in young adults with and without type 1 diabetes mellitus. Ear Hear 38(6):724–735. https://doi.org/10.1097/AUD.0000000000000457

    Article  PubMed  Google Scholar 

  50. Shuster BZ, Depireux DA, Mong JA, Hertzano R (2019) Sex differences in hearing: Probing the role of estrogen signaling. J Acoust Soc Am 145(6):3656. https://doi.org/10.1121/1.5111870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trune DR, Mitchell C, Phillips DS (1988) The relative importance of head size, gender and age on the auditory brainstem response. Hear Res 32(2–3):165–174. https://doi.org/10.1016/0378-5955(88)90088-3

    Article  CAS  PubMed  Google Scholar 

  52. van Looji MAJ, Liem S, van der Burg H, van der Wees J, De Zeeuw CI, van Zanten BGA (2004) Impact of conventional anesthesia on auditory brainstem responses in mice. Hear Res 193(1–2):75–82. https://doi.org/10.1016/j.heares.2004.02.009

    Article  Google Scholar 

  53. Viana LM, O’Malley JT, Burgess BJ, Jones DD, Oliveria CA, Santos F, Merchant SN, Liberman LD, Liberman MC (2015) Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. https://doi.org/10.1016/j.heares.2015.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  54. Villavisanis DF, Berson ER, Lauer AM, Cosetti MK, Schrode KM (2020) Sex-based differences in hearing loss: perspectives from non-clinical research to clinical outcomes. Oto Neurotol 41(3):290–298. https://doi.org/10.1097/MAO.0000000000002507

    Article  Google Scholar 

  55. Wei W, Heinze S, Gerstner DG, Walser SM, Twardella D, Reiter C, Weilnhammer V, Perez-Alvarez C, Steffens T, Herr EWC (2017) Audiometric notch and extended high-frequency hearing threhold shift in relation to total leisure noise exposure: an exploratory analysis. Noise Health. 19(91):263–269. https://doi.org/10.4103/nah.NAH_28_17

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang Q, Wang X, Yang L, Han K, Huang Z, Wu H (2021) Sex differences in noise-induced hearing loss: a cross-sectional study in China. Biol Sex Differ 12(1):24. https://doi.org/10.1186/s13293-021-00369-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

we would like to thank all the participants to take part in the study. We also want to thank the FORUN-Program 2022/2023 (Project-number:889028) from Rostock University Medical Center providing financial support for presenting this work in ARO 2023 in Orlando USA.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and F.H.S. designed research; A.D., K.E. performed research; F.H.S. and L.Z. analyzed data; L.Z., F.H.S. W.G. and R.M. wrote and corrected the paper.

Corresponding author

Correspondence to Lichun Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical statement

The study protocol received approval from our ethical committee (A 2022-0127).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, F.H., Dörmann, A., Ehrt, K. et al. The curvature quantification of wave I in auditory brainstem responses detects cochlear synaptopathy in human beings. Eur Arch Otorhinolaryngol (2024). https://doi.org/10.1007/s00405-024-08699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00405-024-08699-6

Keywords

Navigation