Skip to main content
Log in

Sugar-hormone cross-talk in anthocyanin biosynthesis

  • Minireview
  • Published:
Molecules and Cells

Abstract

Anthocyanins, a class of flavonoids, are recognized for their diverse functions in plant development and beneficial effects on human health. Many of the genes encoding anthocyanin biosynthesis enzymes and the transcription factors that activate or repress them have been identified. Regulatory proteins that control anthocyanin biosynthesis by regulating the expression of different structural genes at the transcriptional and post-transcriptional levels are differentially modulated by environmental and biological factors such as light, temperature, sugar and hormones. This minireview summarizes the recent findings contributing to our understanding of the role of sugars and hormones in the modulation of the anthocyanin biosynthesis pathway with emphasis on the coordinated regulation of the critical transcriptional R2R3-MYB/bHLH/WD40 (MBW) complex in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M., and Cashmore, A.R. (1997). The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 11, 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085–2096.

    PubMed  CAS  Google Scholar 

  • Argyros, R.D., Mathews, D.E., Chiang, Y.H., Palmer, C.M., Thibault, D.M., Etheridge, N., Argyros, D.A., Mason, M.G., Kieber, J.J., and Schaller, G.E. (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20, 2102–2116.

    Article  PubMed  CAS  Google Scholar 

  • Baena-González, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942.

    Article  PubMed  Google Scholar 

  • Baudry, A., Heim, M.A., Dubreucq, B., Caboche, M., Weisshaar, B., and Lepiniec, L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380.

    Article  PubMed  CAS  Google Scholar 

  • Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394.

    PubMed  CAS  Google Scholar 

  • Boss, P.K., Davies, C., and Robinson, S.P. (1996). Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32, 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, S., Puente, P., Deng, X.W., and Wei, N. (1998). Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. Plant J. 15, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Zhang, H., Jablonowski, D., Zhou, X., Ren, X., Hong, X., Schaffrath, R., Zhu, J.K., and Gong, Z. (2006). Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol. Cell. Biol. 26, 6902–6912.

    Article  PubMed  CAS  Google Scholar 

  • Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.

    Article  PubMed  CAS  Google Scholar 

  • Cominelli, E., Gusmaroli, G., Allegra, D., Galbiati, M., Wade, H.K., Jenkins, G.I., and Tonelli, C. (2008). Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J. Plant Physiol. 165, 886–894.

    Article  PubMed  CAS  Google Scholar 

  • Craker, L.E., and Wetherbee, P.J. (1973). Ethylene, light, and anthocyanin synthesis. Plant Physiol. 51, 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Das, P.K., Bang, G., Choi, S.-B., Yoo, S.D., and Park, Y.-I. (2011). Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. Plant Signal. Behav. 6, 1–4.

    Article  Google Scholar 

  • Das, P.K., Shin, D.H., Choi, S.-B., Yoo, S.D., Choi, G., and Park, Y.-I. (2012). Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol. Cells 34, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Deikman, J., and Hammer, P.E. (1995). Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108, 47–57.

    PubMed  CAS  Google Scholar 

  • Devoto, A., Ellis, C., Magusin, A., Chang, H.S., Chilcott, C., Zhu, T., and Turner, J.G. (2005). Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol. Biol. 58, 497–513.

    Article  PubMed  CAS  Google Scholar 

  • Dubos, C., Le Gourrierec, J., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., Routaboul, J.M., Alboresi, A., Weisshaar, B., and Lepiniec, L. (2008). MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 55, 940–953.

    Article  PubMed  CAS  Google Scholar 

  • El-Kereamy, A., Chervin, C., Roustan, J.P., Cheyhnier, V., Souquet, J.M., Moutounet, M., Raynal, J., Ford, C., Latché, A., Pech, J.C., et al. (2003). Exogenous ethylene stimulates the long term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol. Plant. 119, 175–282.

    Article  CAS  Google Scholar 

  • Ferreira, F.J., and Kieber, J.J. (2005). Cytokinin signaling. Curr. Opin. Plant Biol. 8, 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, R.R., and Gibson, S.I. (2002). ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 5, 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, S.I., Laby, R.J., and Kim, D. (2001). The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280, 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814–827.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J., Picton, S., Shabbeer, J., Schuch, W., and Grierson, D. (1992). Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol. 19, 69–87.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J.C., Hu, X.W., and Duan, R.J. (2005). Interactive effects of CKs, light and sucrose on the phenotypes and the syntheses of anthocyanins, lignins in cytokinin over-producing transgenic Arabidopsis. J. Plant Growth Regul. 24, 93–101.

    Article  CAS  Google Scholar 

  • Guo J.-Y., Felippes, F.F., Liu, C.-J., Weigel, D., and Wang, J.-W. (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23, 1512–1522.

    Article  Google Scholar 

  • Gyula, P., Schafer, E., and Nagy, F. (2003). Light perception and signaling in higher plants. Curr. Opin. Plant Biol. 6, 446–452.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Oki, K., Hoshino, K., and Kuboi, T. (2003). Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci. 164, 259–265.

    Article  CAS  Google Scholar 

  • Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., and Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 62, 2465–2483.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, M., Pischke, M.S., Mahonen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., et al (2004). In planta functions of the Arabidopsis CK receptor family. Proc. Natl. Acad. Sci. USA 101, 8821–8826.

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux, V., Kwak, J.M., and Schroeder, J.I. (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389

    Article  PubMed  CAS  Google Scholar 

  • Ishida, K., Yamashino, T., Yokoyama, A., and Mizuno, T. (2008). Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol. 49, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K., Kim, W.J., Park, Y.I., Yoo, S.D., Choi, S.B., et al. (2010). Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis thaliana. Plant Physiol. 154, 1515–1531.

    Article  Google Scholar 

  • Jiang, C., Gao, X., Liao, L., Harberd, N.P., and Fu, X. (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signalling pathway in Arabidopsis. Plant Physiol. 145, 1460–1470.

    Article  PubMed  CAS  Google Scholar 

  • Kang, B.G., and Burg, S.P. (1973). Role of ethylene in phytochrome induced anthocyanin biosynthesis. Planta 110, 227–235.

    Article  CAS  Google Scholar 

  • Kim, J.S., Lee, B.H., Kim, S.H., Ok, K.H., and Cho, K.Y. (2006). Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. J. Plant Biol. 49, 16–25.

    Article  CAS  Google Scholar 

  • Kubo, H., Peeters, A.J.M., Aarts, M.G.M., Pereira, A., and Koornneef, M. (1999). ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11, 1217–1226.

    PubMed  CAS  Google Scholar 

  • Larronde, F., Krisa, S., Decendit, A., Cheze, C., and Merillon, J.M. (1998). Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep. 17, 946–950.

    Article  CAS  Google Scholar 

  • Lee, D.W., and Collins, T.M. (2001). Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. Int. J. Plant Sci. 162, 1141–1153.

    Article  CAS  Google Scholar 

  • Lee, S., Ryu, J.Y., Kim, S.Y., Jeon, J.H., Song, J.Y., Cho, H.T., Choi, S.B., Marsac, N.T., and Park, Y.-I. (2007). Transcriptional regulation of the respiratory genes in the cyanobacterium Synechocystis sp. PCC 6803 during the early response to glucose feeding. Plant Physiol. 145, 1019–1030.

    Google Scholar 

  • Lelievre, J.M., Tichit, L., Dao, P., Fillion, L., Nam, Y.W., Pech, J.L., and Latche, A. (1997). Effects of chilling on the expression of ethylene biosynthetic gene in ‘Passe-crassane’ pears (Pyrus communis) fruits. Plant Mol. Biol. 33, 847–855.

    Article  PubMed  CAS  Google Scholar 

  • Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., and Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179, 1004–1016.

    Article  PubMed  CAS  Google Scholar 

  • Marles, M.A., Ray, H., and Gruber, M.Y. (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64, 367–383.

    Article  PubMed  CAS  Google Scholar 

  • Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., and Schaller, G.E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17, 3007–3018.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Umemura, Y., and Ohme-Takagi, M. (2008). AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 55, 954–967.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, D.R., Carson, C.B., Stinard, P.S., and Robertson, D.S. (1989). Molecular analysis of viviparous-1: an abscisic acidinsensitive mutant of maize. Plant Cell 1, 523–532.

    PubMed  CAS  Google Scholar 

  • Mita, S., Hirano, H., and Nakamura, K. (1997). Negative regulation in the expression of a sugar-inducible gene in Arabidopsis thaliana-a recessive mutation causing enhanced expression of a gene for β-amylase. Plant Physiol. 114, 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Saito, H., Goto-Yamamoto, N., Kitayama, M., Kobayashi, S., Sugaya, S., Gemma, H., and Hashizume, K. (2005). Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes. Vitis 44, 161–165.

    CAS  Google Scholar 

  • Nakamura, N., Nakamae, H., and Maekawa, L. (1980). Effects of light and kinetin on anthocyanin accumulation in the petals of Rosa hybrid Hort cv. Ehigasa. Z Pflanzenphysiol. 98, 263–270.

    CAS  Google Scholar 

  • Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., and Lepiniec, L. (2000). The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in arabidopsis siliques. Plant Cell 12, 1863–1878.

    PubMed  CAS  Google Scholar 

  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M., and Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114.

    PubMed  CAS  Google Scholar 

  • Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., and Ueguchi, C. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365–1377.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, N., Kitahata, N., Seki, M., Narusaka, Y., Narusaka, M., Kuromori, T., Asami, T., Shinozaki, K., and Hirayama, T. (2005). Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J. 44, 972–984.

    Article  PubMed  CAS  Google Scholar 

  • Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T., and Nakamura, K. (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 127, 252–261.

    Article  PubMed  CAS  Google Scholar 

  • Paek, N.C., Lee, B.M., Bai, D.G., Cobb, B.G., Magill, C.W., and Smith, J.D. (1997). Regulatory roles of abscisic acid for anthocyanin synthesis in maize kernels. Maydica 42, 385–391.

    Google Scholar 

  • Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., and Xie, D. (2011). The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795–1814.

    Article  PubMed  CAS  Google Scholar 

  • Rengel, Z., and Kordan, H.A. (1987). Effects of growth regulators on light-dependent anthocyanin production in Zea mays seedlings. Physiol. Plant 69, 511–519.

    Article  CAS  Google Scholar 

  • Reymond, P., and Farmer, E.E. (1998). Jasmonate and salicylate as global signals for defence gene expression. Curr. Opin. Plant Biol. 1, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Riefler, M., Novak, O., Strnad, M., and Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development and cytokinin metabolism. Plant Cell 18, 40–54.

    Article  PubMed  CAS  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709

    Article  PubMed  CAS  Google Scholar 

  • Ryu, J.Y., Song, J.Y., Lee, J.M., Jeong, S.W., Chow, W.S., Choi, S.B., Pogson, B.J., and Park, Y.-I. (2004). Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 279, 25320–25325.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, J.Y., Jeong, S.W., Lim, A.Y., Ko, Y., Yoon, S., Choi, A.B., and Park, Y.-I. (2008). Cyanobacterial glucokinase complements the glucose sensing role of Arabidopsis thaliana hexokinase 1. Biochem. Biophys. Res. Commun. 374, 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Shan, X., Zhang Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 13, 3849–3860.

    Article  Google Scholar 

  • Shin, J., Park, E., and Choi, G. (2007). PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J. 49, 981–994.

    Article  PubMed  CAS  Google Scholar 

  • Sivitz, A.B., Reinders, A., and Ward, J.M. (2009). Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 147, 92–100.

    Article  Google Scholar 

  • Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49–81.

    Article  PubMed  CAS  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Steyn, W.J., Wand, S.J.E., Holcroft, D.M., and Jacobs, G. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155, 349–361.

    Article  CAS  Google Scholar 

  • Stulke, J., and Hillen, W. (1999) Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T., and Gubler, F. (2004). Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol. 55, 197–223.

    Article  PubMed  CAS  Google Scholar 

  • Takada, K., Ishimaru, K., Minamisawa, K., Kamada, H., and Ezura, H. (2005). Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Sci. 169, 935–942.

    Article  CAS  Google Scholar 

  • Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139, 1840–1852.

    Article  PubMed  CAS  Google Scholar 

  • Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., et al. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218–235.

    Article  PubMed  CAS  Google Scholar 

  • Tonelli, C., Cominelli, E., Allegra, D., and Galbiati, M. (2007). Plant tolerance to drought and salinity: modulation of transcription factors. Proceedings of the 18th International Conference on Arabidopsis Research 176.

  • Vitrac, X., Larronde, F., Krisa, S., Decendit, A., Deffieux, G., and Merillon, J.M. (2000). Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53, 659–665.

    Article  PubMed  CAS  Google Scholar 

  • Wade, H.K., Sohal, A.K., and Jenkins, G.I. (2003) Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes. Plant Physiol. 131, 707–715.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., Zhao, Y., Han, C., Zhang, W., Duan, Y., et al. (2007). Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 64, 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, W.Y., Sheen, J., and Jang, J.C. (2000). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44, 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D., Feys, B.F, James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defence and fertility. Science 280, 1091–1094.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T., and Lloyd, A. (2003). A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130, 4859–4869.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Liu, Z., Liu, R., Hao, H., and Bi, Y. (2011). Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signal. Behav. 6, 632–634.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Qi, J., Ren, N., Cheng, J., Erb, M., Mao, B., and Lou, Y. (2009). Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 60, 638–648.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Il Park.

About this article

Cite this article

Das, P.K., Shin, D.H., Choi, SB. et al. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34, 501–507 (2012). https://doi.org/10.1007/s10059-012-0151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0151-x

Keywords

Navigation