Skip to main content
Log in

Role of ethylene in phytochrome-induced anthocyanin synthesis

  • Published:
Planta Aims and scope Submit manuscript

Summary

Synthesis of anthocyanin pigments in etiolated cabbage seedlings is influenced by ethylene at concentrations higher than 10 ppb, and etiolated seedlings produce sufficient ethylene to influence their anthocyanin synthesis. When escape of endogenous ethylene from this tissue is enhanced by means of hypobaric treatment, anthocyanin synthesis is accelerated. Stimulation of anthocyanin synthesis by brief red illumination is completely prevented by applied ethylene and indoleacetic acid inhibits anthocyanin synthesis by stimulating ethylene production. Red light reduces endogenous as well as auxin-induced ethylene production and there is a close correlation between light-induced inhibition of ethylene synthesis and stimulation of anthocyanin formation. We suggest that in part photo-induced anthocyanin synthesis is due to a lowered ethylene content in light-treated tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akamine, E. K.: Ethylene production in fading of Vanda orchid blossoms. Science 140, 1217–1218 (1963).

    Google Scholar 

  • Apelbaum, A., Burg, S. P.: Effects of ethylene and 2,4-dichlorophenoxyacetic acid on cellular expansion in Pisum sativum. Plant Physiol. 50, 125–131 (1972).

    Google Scholar 

  • Arnold, A. W., Albert, L. S.: Chemical factors affecting anthocyanin formation and morphogenesis in cultured hypocotyl segments of Impatiens balsamina. Plant Physiol. 39, 307–312 (1964).

    Google Scholar 

  • Burg, S. P., Burg, E. A.: fruit storage at subatmospheric pressures. Science 153, 314–315 (1966a).

    Google Scholar 

  • Burg, S. P., Burg, E. A.: The intsraction between auxin and ethylene and its role in plant growth. Proc. nat. Acad. Sci. (Wash.) 55, 262–269 (1966b).

    Google Scholar 

  • Burg, S. P., Burg, E. A.: Ethylene formation in pea seedlings: Its relation to the inhibition of bud growth caused by indole-3-acetic acid. Plant Physiol., 43, 1069–1074 (1968a).

    Google Scholar 

  • Burg, S. P., Burg, E. A.: Auxin stimulated ethylene formation: Its relationship to auxin inhibited growth, root geotropism and other plant processes. In: Biochemistry and physiology of plant growth substances, F. Wightman and G. Setterfield, eds., p. 1275–1294. Ottawa: Runge Press 1968(b).

    Google Scholar 

  • Burg, S. P., Dijkman, M. J.: Ethylene and auxin participation in pollen induced fading of Vanda blossoms. Plant Physiol. 42, 1648–1650 (1967).

    Google Scholar 

  • Byers, R. E., Baker, L. R., Sell, H. M., Herner, R. C., Dilley, D. R.: Ethylene: A natural regulator of sex expression of Cucumis melo L. Proc. nat. Acad. Sci. (Wash.) 69, 717–720 (1972).

    Google Scholar 

  • Chadwick, A. V., Arditti, J.: Ethylene evolution and anthocyanin synthesis by Cymbidium (Orchidaceae) flowers. (Abstr.) Plant Physiol. 48, S-111 (1972).

  • Chadwick, A. V., Burg, S. P.: An explanation of the inhibition of root growth caused by indole-3-acetic acid. Plant Physiol. 42, 415–420 (1967).

    Google Scholar 

  • Constabel, F., Shyluk, J. P., Gamborg, O L: The effect of hormones on anthocyanin accumulation in cell cultures of Haplopappus gracilis. Planta (Berl.) 96, 306–316 (1971).

    Google Scholar 

  • Craker, L. E., Standley, L. A., Starbuck, M. J.: Ethylene control of anthocyanin synthesis in Sorghum. Plant Physiol. 48, 349–352 (1971).

    Google Scholar 

  • Craker, L. E., Wetherbee, P. J.: Ethylene, light, and anthocyanin synthesis. (Abstr.) Plant Physiol. 49, S-112 (1972).

  • Downs, R. J., Siegelman, H. W., Butler, W. L., Hendricks, S. B.: Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature (Lond.) 205, 909–910 (1965).

    Google Scholar 

  • Goeschl, J. D., Pratt, H. K., Bonner, A. B.: An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol. 42, 1077–1080 (1967).

    Google Scholar 

  • Goeschl, J. D., Rappaport, L., Pratt, H. K.: Ethylene as a factor regulating the growth of pea epicotyl subjected to physical stress. Plant Physiol. 41, 877–884 (1966).

    Google Scholar 

  • Grill, R., Vince, D.: Anthocyanin formation in turnip seedlings (Brassica rapa L.): Evidence for two light steps in the biosynthetic pathway. Planta (Berl.) 63, 1012 (1964).

    Google Scholar 

  • Holm, R. E., Abeles, F. B.: The role of ethylene in 2,4-D-induced growth inhibition. Planta (Berl.) 78, 293–304 (1968).

    Google Scholar 

  • Hyodo, H., Yang, S. F.: Ethylene-enhanced synthesis of phenylalanine ammnonialyase in pea seedlings. Plant Physiol. 47, 765–770 (1971).

    Google Scholar 

  • Imaseki, H., Pjon, C. J., Furuya, M.: Phytochrome action in Oryza sativa L. IV. Red and far red reversible effect on the production of ethylene in excised coleoptiles. Plant Physiol. 48, 241–244 (1971).

    Google Scholar 

  • Imaseki, H., Uchiyama, M., Uritani, I.: Effect of ethylene on the inductive increase in metabolic activities in sliced sweet potato roots. Agr. Biol. Chem. 32, 387–389 (1968).

    Google Scholar 

  • Kang, B. G., Burg, S. P.: Involvement of ethylene in phytochrome-mediated carotenoid synthesis. Plant Physiol. 49, 631–633 (1972a).

    Google Scholar 

  • Kang, B. G., Burg, S. P.: Relation of phytochrome-enhanced geotropic sensitivity to ethylene production. Plant Physiol. 50, 132–135 (1972b).

    Google Scholar 

  • Kang, B. G., Burg, S. P.: Ethylene as a natural agent inducing plumular hook formation in pea seedlings. Planta (Berl.) 104, 275–281 (1972c).

    Google Scholar 

  • Kang, B. G., Newcomb, W., Burg, S. P.: Mechanism of auxin-induced ethylene production. Plant Physiol. 47, 504–509 (1971).

    Google Scholar 

  • Kang, B. G., Ray, P. M.: Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins. Planta (Berl.) 87, 206–216 (1969).

    Google Scholar 

  • Kang, B. G., Yocum, C. S., Burg, S. P., Ray, P. M.: Ethylene and carbon dioxide; mediation of hypocotyl hook opening response. Science 156, 958–959 (1967).

    PubMed  Google Scholar 

  • Ku, P., Mancinelli, A. L.: Photocontrol of anthocyanin synthesis. I. Action of short, prolonged, and intermittent irradiation on the formation of anthocyanins in cabbage, mustard, and turnip seedlings. Plant Physiol. 49, 212–217 (1972).

    Google Scholar 

  • Lange, H., Shoropshire, W., Jr., Mohr, H.: An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 47, 649–655 (1971).

    Google Scholar 

  • Morgan, P. W., Powell, R. D.: Involvement of ethylene in responses of etiolated bean hypocotyl hook to coumarin. Plant Physiol. 45, 553–557 (1970).

    Google Scholar 

  • Riov, J., Monselise, S. P., Kahn, R. S.: Ethylene-controlled induction of phenylalanine ammonia-lyase in citrus fruit peel. Plant Physiol. 44, 631–635 (1969).

    Google Scholar 

  • Scherf, H., Zenk, M. H.: Induction of anthocyanin and phenylalanine ammonialyase formation by a high energy light reaction and its control through the phytochrome system. Z. Pflanzenphysiol. 56, 203–206 (1967).

    Google Scholar 

  • Schneider, M. J., Stimson, W. R.: Contribution of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings. Plant Physiol. 48, 312–315 (1971).

    Google Scholar 

  • Schneider, M. J., Stimson, W. R.: Phytochrome and photosystem. I. Interaction in a high energy photoresponse. Proc. nat. Acad. Sci. (Wash.) 69, 2150–2154 (1972).

    Google Scholar 

  • Stafford, H. A.: Regulatory mechanisms in anthocyanin biosynthesis in first internodes of Sorghum vulgare: Effect of presumed inhibitors of protein synthesis. Plant Physiol. 41, 953–961 (1966).

    Google Scholar 

  • Stafford, H. A.: Relationship between the development of adventitious roots and the biosynthesis on anthocyanins in first internodes of Sorghum. Plant Physiol. 43, 318–326 (1968).

    Google Scholar 

  • Stahmann, M. A., Clare, B. G., Woodbury, W.: Increased disease resistance and enzyme activity induced by ethylene and ethylene production by black rot infected sweet potato tissue. Plant Physiol. 41, 1505–1512 (1966).

    Google Scholar 

  • Strickland, R. G., Sunderland, N.: Production of anthocyanins, flavonols and chlorogenic acids by cultured callus tissues of Haplopappus gracilis. Ann. Bot. 36, 443–457 (1972).

    Google Scholar 

  • Vince, D.: Growth and anthocyanin synthesis in excised Sorghum internodes. I. Effects of growth regulating substances. Planta (Berl.) 82, 261–279 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B.G., Burg, S.P. Role of ethylene in phytochrome-induced anthocyanin synthesis. Planta 110, 227–235 (1973). https://doi.org/10.1007/BF00387635

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387635

Keywords

Navigation