Skip to main content
Log in

Bacterial transposons are co-transferred with T-DNA to rice chromosomes during Agrobacterium-mediated transformation

  • Research Article
  • Published:
Molecules and Cells

Abstract

Agrobacterium tumefaciens is widely utilized for delivering a foreign gene into a plant’s genome. We found the bacterial transposon Tn5393 in transgenic rice plants. Analysis of the flanking sequences of the transferred-DNA (T-DNA) identified that a portion of the Tn5393 sequence was present immediately next to the end of the T-DNA. Because this transposon was present in A. tumefaciens strain LBA4404, but not in EHA105 and GV3101, our findings indicated that Tn5393 was transferred from LBA4404 into the rice genome during the transformation process. We also noted that another bacterial transposon, Tn5563, is present in transgenic plants. Analyses of 331 transgenic lines revealed that 26.0% carried Tn5393 and 2.1% contained Tn5563. In most of the lines, an intact transposon was integrated into the T-DNA and transferred to the rice chromosome. More than one copy of T-DNA was introduced into the plants, often at a single locus. This resulted in T-DNA repeats of normal and transposon-carrying TDNA that generated deletions of a portion of the T-DNA, joining the T-DNA end to the bacterial transposon. Based on these data, we suggest that one should carefully select the appropriate Agrobacterium strain to avoid undesirable transformation of such sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., Watson, B.D., Stachel, S., Gordon, M.P., and Nester, E.W. (1985). New cloning vehicles for transformation of higher plants. EMBO J. 4, 277–284.

    PubMed  CAS  Google Scholar 

  • An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040–2047.

    Article  PubMed  CAS  Google Scholar 

  • An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005). Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.H., and Ronald, P.C. (1999). A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53–57.

    Article  CAS  Google Scholar 

  • Chiou, C.S., and Jones, A.L. (1993). Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175, 732–740.

    PubMed  CAS  Google Scholar 

  • De Neve, M., De Buck, S., Jacobs, A., van Montagu, M., and Depicker, A. (1997). T-DNA integration patterns in cotransformed plant cells suggest that T-DNA repeats originate from cointegration of separate T-DNAs. Plant J. 11, 15–29.

    Article  PubMed  Google Scholar 

  • De Buck, S., Jacobs, A., van Montagu, M., and Depicker, A. (1999). The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20, 295–304.

    Article  PubMed  Google Scholar 

  • De Buck, S., De Wilde, C., van Montagu, M., and Depicker, A. (2000). T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol. Breed. 6, 459–468.

    Article  Google Scholar 

  • Hellens, R., Mullineaux, P., and Klee, H. (2000). A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983). A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.

    Article  CAS  Google Scholar 

  • Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636–1644.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., and Napoli, C.A. (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol. 31, 957–973.

    Article  PubMed  CAS  Google Scholar 

  • Kang, K., Lee, K., Park, S., Lee, S., Kim, Y.S., and Back, K. (2010). Overexpression of rice ferrochelatase I and II leads to increased susceptibility to oxyfluorfen herbicide in transgenic rice. J. Plant Biol. 53, 291–296.

    Article  CAS  Google Scholar 

  • Kim, S.R., Lee, J., Jun, S.H., Park, S., Kang, H.G., Kwon, S., and An, G. (2003a). Transgene structures in T-DNA-inserted rice plants. Plant Mol. Biol. 52, 761–773.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.R., Lee, S., Kang, H.G., Jeon, J.S., Kim, K.M., and An, G. (2003b). A complete sequence of the binary vector. J. Plant Biol. 46, 211–214.

    Article  CAS  Google Scholar 

  • Kim, S.R., Lee, D.Y., Yang, J.I., Moon, S., and An, G. (2009). Cloning vectors for rice. J. Plant Biol. 52, 73–78.

    Article  CAS  Google Scholar 

  • Kim, S.R., Jeon, J.S., and An, G. (2011). Development of an efficient inverse PCR method for isolating gene tags from T-DNA insertional mutants in rice. Meth. Mol. Biol. 678, 139–146.

    Article  CAS  Google Scholar 

  • Klapwijk, P.M., van Breukelen, J., Korevaar, K., Ooms, G., and Schilperoort, R.A. (1980). Transposition of Tn904 encoding streptomycin resistance into the octopine Ti plasmid of Agrobacterium tumefaciens. J. Bacteriol. 141, 129–136.

    PubMed  CAS  Google Scholar 

  • Komori, T., Imayama, T., Kato, N., Ishida, Y., Ueki, J., and Komari, T. (2007). Current status of binary vectors and superbinary vectors. Plant Physiol. 145, 1155–1160.

    Article  PubMed  CAS  Google Scholar 

  • Kononov, M.E., Bassuner, B., and Gelvin, S.B. (1997). Integration of T-DNA binary vector “backbone” sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11, 945–957.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., and Fladung, M. (2000). Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol. Gen. Genet. 264, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L.Y., and Gelvin, S.B. (2008). T-DNA binary vectors and systems. Plant Physiol. 146, 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Ryoo, N., Jeon, J.S., Guerinot, M.L., and An, G. (2012). Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol. Cells 33, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Oltmanns, H., Frame, B., Lee, L.Y., Johnson, S., Li, B., Wang, K., and Gelvin, S.B. (2010). Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol. 152, 1158–1166.

    Article  PubMed  CAS  Google Scholar 

  • Ooms, G., Hooykaas, P.J., Van Veen, R.J., Van Beelen, P., Regensburg-Tuïnk, T.J., and Schilperoort, R.A. (1982) Octopine Tiplasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7, 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489–502.

    Article  PubMed  CAS  Google Scholar 

  • ülker, B., Li, Y., Rosso, M.G., Logemann, E., Somssich, I.E., and Weisshaar, B. (2008). T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat. Biotechnol. 26, 1015–1017.

    Article  PubMed  Google Scholar 

  • Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F. Jr., et al. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 14, 2317–2323.

    Article  Google Scholar 

  • Yeo, C.C., Tham, J.M., Kwong, S.M., Yiin, S., and Poh, C.L. (1998). Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 of Pseudomonas alcaligenes. FEMS Microbiol. Lett. 165, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z., Zhu, Y., Erhardt, M., Ruan, Y., and Shen, W.H. (2009). A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana. J. Integr. Plant Biol. 51, 367–373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

About this article

Cite this article

Kim, SR., An, G. Bacterial transposons are co-transferred with T-DNA to rice chromosomes during Agrobacterium-mediated transformation. Mol Cells 33, 583–589 (2012). https://doi.org/10.1007/s10059-012-0010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0010-9

Keywords

Navigation