Skip to main content
Log in

On the extension of the grain loop concept from 2D to 3D granular assemblies

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In the field of granular materials, a link between the microscopic variables (contact force and displacement) and macroscopic variables (stress and strain) requires an intermediate scale called the mesoscopic scale. An important class of mesostructure is the so-called loops, which are closed chains of grains in contact. In two dimensions (2D), these structures tessellate a material domain into elementary partitions that account for the physics of granular materials. However, this property no longer applies in three dimensions (3D). In this paper, we propose to identify 3D mesostructures that generalize the 2D properties of loops and their ability to account for the deformability of granular materials. To do so, a weighted Delaunay tessellation is used to partition a 3D specimen into tetrahedra. These tetrahedra are then merged through a criterion defined consistently with the one used to identify loops in 2D. As the 3D structures do not match the mathematical definition of loops, they are named clusters. A series of 3D DEM triaxial tests were performed to analyze the statistics of clusters during the loading path. It is shown that clusters behave analogously to loops, promoting an increase in the number of denser mesostructures during the strain contraction phase and looser ones during dilation. Furthermore, increasing amounts of looser clusters appear around force chains, promoting a decrease in the stability of the chained structures. Clusters are more diverse in shape and topology compared with loops. Thus, additional metrics besides the number of grains forming them are needed to characterize these structures. In this respect, we propose the concepts of order (number of external frontiers) and deformability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The limit between medium and large categories is defined by the largest cluster existing from the beginning of the test in significant amounts. Other initial conditions (like a looser soil) might be useful to precise which order is the most relevant to distinguish medium and large cluster groups.

References

  1. Satake, M.: A discrete-mechanical approach to granular materials. Int. J. Eng. Sci. 30(10), 1525–1533 (1992). https://doi.org/10.1016/0020-7225(92)90162-A

    Article  Google Scholar 

  2. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010). https://doi.org/10.1103/PhysRevE.81.011302

    Article  ADS  Google Scholar 

  3. Tordesillas, A., Steer, C.A.H., Walker, D.M.: Force chain and contact cycle evolution in a dense granular material under shallow penetration. Nonlinear Process. Geophys. 21(2), 505–519 (2014). https://doi.org/10.5194/npg-21-505-2014

    Article  ADS  Google Scholar 

  4. Kruyt, N.P., Rothenburg, L.: On micromechanical characteristics of the critical state of two-dimensional granular materials. Acta Mech. 225(8), 2301–2318 (2014). https://doi.org/10.1007/s00707-014-1128-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, H., Nicot, F., Darve, F.: Meso-structure evolution in a 2D granular material during biaxial loading. Granular Matter 18(1), 3 (2016). https://doi.org/10.1007/s10035-016-0608-2

    Article  Google Scholar 

  6. Liu, J., Wautier, A., Bonelli, S., Nicot, F., Darve, F.: Macroscopic softening in granular materials from a mesoscale perspective. Int. J. Solids Struct. 193–194, 222–238 (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.022

    Article  Google Scholar 

  7. Sun, X., Kob, W., Blumenfeld, R., Tong, H., Wang, Y., Zhang, J.: Friction-controlled entropy-stability competition in granular systems. Phys. Rev. Lett. 125(26), 268005 (2020). https://doi.org/10.1103/PhysRevLett.125.268005

    Article  ADS  Google Scholar 

  8. Wanjura, C.C., Gago, P., Matsushima, T., Blumenfeld, R.: Structural evolution of granular systems: theory. Granular Matter (2020). https://doi.org/10.1007/s10035-020-01056-4

    Article  Google Scholar 

  9. Blumenfeld, R.: Stress in planar cellular solids and isostatic granular assemblies: coarse-graining the constitutive equation. Physica A 336(3), 361–368 (2004). https://doi.org/10.1016/j.physa.2003.12.043

    Article  ADS  MathSciNet  Google Scholar 

  10. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005). https://doi.org/10.1103/PhysRevE.72.041307

    Article  ADS  Google Scholar 

  11. Sun, Q., Jin, F., Liu, J., Zhang, G.: Understanding force chain in dense granular materials. Int. J. Mod. Phys. B 24(29), 5743–5759 (2010). https://doi.org/10.1142/S0217979210055780

    Article  ADS  Google Scholar 

  12. Zhu, H., Nicot, F., Darve, F.: Meso-structure organization in two-dimensional granular materials along biaxial loading path. Int. J. Solids Struct. 96, 25–37 (2016). https://doi.org/10.1016/j.ijsolstr.2016.06.025

    Article  Google Scholar 

  13. Alshibli, K.A., El-Saidany, H.A.: Quantifying void ratio in granular materials using Voronoi tessellation. J. Comput. Civ. Eng. 15(3), 232–238 (2001). https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(232)

    Article  Google Scholar 

  14. Al-Raoush, R., Thompson, K., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003). https://doi.org/10.2136/sssaj2003.1687

    Article  ADS  Google Scholar 

  15. Reboul, N., Vincens, E., Cambou, B.: A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granular Matter 10(6), 457–468 (2008). https://doi.org/10.1007/s10035-008-0111-5

    Article  MATH  Google Scholar 

  16. O’Sullivan, C., Bluthé, J., Sejpar, K., Shire, T., Cheung, L.Y.G.: Contact based void partitioning to assess filtration properties in DEM simulations. Comput. Geotech. 64, 120–131 (2015). https://doi.org/10.1016/j.compgeo.2014.11.003

    Article  Google Scholar 

  17. Nguyen, N.-S., Taha, H., Marot, D.: A new Delaunay triangulation-based approach to characterize the pore network in granular materials. Acta Geotech. (2021). https://doi.org/10.1007/s11440-021-01157-1

    Article  Google Scholar 

  18. Nicot, F., Darve, F.: The H-microdirectional model: accounting for a mesoscopic scale. Mech. Mater. 43(12), 918–929 (2011). https://doi.org/10.1016/j.mechmat.2011.07.006

    Article  Google Scholar 

  19. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  20. Weber, J.: Recherches concernant les contraintes intergranulaires dans lesmilieux pulvérulents. Bulletin de Liaison des Ponts-et-Chaussées 20, 1–20 (1966)

    Google Scholar 

  21. Bathurst, R.J., Rothenburg, L.: Observations on stress-force-favbric relationship in idealized granular materials. Mech. Mater. 9(1), 65–80 (1989). https://doi.org/10.1016/0167-6636(90)90030-J

    Article  Google Scholar 

  22. Bagi, K.: On the definition of stress and strain in granular assemblies through the relation between micro-and macro-level characteristics. Powders Grains 93, 117–121 (1993)

    Google Scholar 

  23. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998). https://doi.org/10.1103/PhysRevLett.80.61

    Article  ADS  Google Scholar 

  24. Satake, M.: Tensorial form definitions of discrete-mechanical quantities for granular assemblies. Int. J. Solids Struct. 41(21), 5775–5791 (2004). https://doi.org/10.1016/j.ijsolstr.2004.05.046

    Article  MATH  Google Scholar 

  25. Nguyen, N.-S., Magoariec, H., Cambou, B.: Local stress analysis in granular materials at a mesoscale. Int. J. Numer. Anal. Meth. Geomech. 36(14), 1609–1635 (2012). https://doi.org/10.1002/nag.1063

    Article  Google Scholar 

  26. Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165–177 (1996). https://doi.org/10.1016/0167-6636(95)00044-5

    Article  Google Scholar 

  27. Kruyt, N., Rothenburg, L.: Micromechanical definition of the strain tensor for granular materials. J. Appl. Mech. (1996). https://doi.org/10.1115/1.2823353

    Article  MATH  Google Scholar 

  28. Cambou, B., Chaze, M., Dedecker, F.: Change of scale in granular materials. Eur. J. Mech. A. Solids 19(6), 999–1014 (2000). https://doi.org/10.1016/S0997-7538(00)01114-1

    Article  MATH  Google Scholar 

  29. Ball, R.C., Blumenfeld, R.: Stress field in granular systems: loop forces and potential formulation. Phys. Rev. Lett. 88(11), 115505 (2002). https://doi.org/10.1103/PhysRevLett.88.115505

    Article  ADS  Google Scholar 

  30. Kruyt, N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40(3), 511–534 (2003). https://doi.org/10.1016/S0020-7683(02)00624-8

    Article  MATH  Google Scholar 

  31. Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O.: On the definition of the stress tensor in granular media. Int. J. Solids Struct. 50(14–15), 2508–2517 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.001

    Article  Google Scholar 

  32. Oda, M., Kazama, H., Konishi, J.: Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28(1–4), 103–111 (1998). https://doi.org/10.1016/S0167-6636(97)00018-5

    Article  Google Scholar 

  33. Liu, J., Nicot, F., Zhou, W.: Sustainability of internal structures during shear band forming in 2D granular materials. Powder Technol. 338, 458–470 (2018). https://doi.org/10.1016/j.powtec.2018.07.001

    Article  Google Scholar 

  34. Nguyen, N., Magoariec, H., Vincens, E., Cambou, B.: On the definition of a relevant meso-scale for upscaling the mechanical behavior of 3D granular materials. Granular Matter (2020). https://doi.org/10.1007/s10035-019-0972-9

    Article  Google Scholar 

  35. Reboul, N., Vincens, E., Cambou, B.: A computational procedure to assess the distribution of constriction sizes for an assembly of spheres. Comput. Geotech. 37(1–2), 195–206 (2010). https://doi.org/10.1016/j.compgeo.2009.09.002

    Article  Google Scholar 

  36. Gao, S., Meegoda, J.N., Hu, L.: Two methods for pore network of porous media. Int. J. Numer. Anal. Meth. Geomech. 36(18), 1954–1970 (2012). https://doi.org/10.1002/nag.1134

    Article  Google Scholar 

  37. Kang, D.H., Choo, J., Yun, T.S.: Evolution of pore characteristics in the 3D numerical direct shear test. Comput. Geotech. 49, 53–61 (2013). https://doi.org/10.1016/j.compgeo.2012.10.009

    Article  Google Scholar 

  38. Sufian, A., Russell, A.R., Whittle, A.J., Saadatfar, M.: Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granular Matter 17(6), 727–742 (2015). https://doi.org/10.1007/s10035-015-0590-0

    Article  Google Scholar 

  39. Kuhn, M.R., Daouadji, A.: Multi-directional behavior of granular materials and its relation to incremental elasto-plasticity. Int. J. Solids Struct. 152–153, 305–323 (2018). https://doi.org/10.1016/j.ijsolstr.2018.07.005

    Article  Google Scholar 

  40. Sufian, A., Russell, A.R., Whittle, A.J.: Evolving pore orientation, shape and size in sheared granular assemblies. Granular Matter 21(1), 4 (2019). https://doi.org/10.1007/s10035-018-0856-4

    Article  Google Scholar 

  41. Mellor, D.W.: Random Close Packing (RCP) of Equal Spheres: Structure and Implications for Use as a Model Porous Medium (1989). https://doi.org/10.21954/OU.RO.0000DFC0. The Open University

  42. Blumenfeld, R., Edwards, S.F.: Granular entropy: explicit calculations for planar assemblies. Phys. Rev. Lett. 90(11), 114303 (2003). https://doi.org/10.1103/PhysRevLett.90.114303

    Article  ADS  Google Scholar 

  43. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2/3), 140 (2012). https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  44. Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48(2), 339–344 (1981). https://doi.org/10.1115/1.3157619

    Article  ADS  MATH  Google Scholar 

  45. Mehrabadi, M.M., Nemat-Nasser, S., Oda, M.: On statistical description of stress and fabric in granular materials. Int. J. Numer. Anal. Meth. Geomech. 6(1), 95–108 (1982). https://doi.org/10.1002/nag.1610060107

    Article  MathSciNet  MATH  Google Scholar 

  46. de Saxcé, G., Fortin, J., Millet, O.: About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 36(12), 1175–1184 (2004). https://doi.org/10.1016/j.mechmat.2003.01.002

    Article  Google Scholar 

  47. Sufian, A., Russell, A.R., Whittle, A.J.: Anisotropy of contact networks in granular media and its influence on mobilised internal friction. Géotechnique (2017). https://doi.org/10.1680/jgeot.16.P.170

    Article  Google Scholar 

  48. Deng, N., Wautier, A., Tordesillas, A., Thiery, Y., Yin, Z.-Y., Hicher, P.-Y., Nicot, F.: Lifespan dynamics of cluster conformations in stationary regimes in granular materials. Phys. Rev E 105(1), 014902 (2022). https://doi.org/10.1103/PhysRevE.105.014902

    Article  ADS  Google Scholar 

  49. Xiong, H., Nicot, F., Yin, Z.Y.: A three-dimensional micromechanically based model. Int. J. Numer. Anal. Meth. Geomech. 41(17), 1669–1686 (2017). https://doi.org/10.1002/nag.2692

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by public funding through a Ph.D. scholarship with the university INSA de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Chueire.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueire, J., Daouadji, A., Nicot, F. et al. On the extension of the grain loop concept from 2D to 3D granular assemblies. Granular Matter 25, 57 (2023). https://doi.org/10.1007/s10035-023-01353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01353-8

Keywords

Navigation