Skip to main content
Log in

On micromechanical characteristics of the critical state of two-dimensional granular materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In micromechanics of quasi-static deformation of granular materials, relationships are investigated between the macro-scale, continuum-mechanical characteristics, and the micro-scale characteristics at the particle and interparticle contact level. An important micromechanical quantity is the fabric tensor that reflects the distribution of contact orientations. It also contains information on the coordination number, i.e. the average number of contacts per particle. Here, the focus is on characteristics of the critical state in the two-dimensional case. Critical state soil mechanics is reviewed from the micromechanical viewpoint. Two-dimensional discrete element method (DEM) simulations have been performed with discs from a fairly narrow particle-size distribution. Various values for the interparticle friction coefficient and for the confining pressure have been considered to investigate the effect of these quantities on critical state characteristics (shear strength, packing fraction, coordination number and fabric anisotropy). Results from these DEM simulations show that a limiting fabric state exists at the critical state, which is geometrical in origin. The contact network tessellates the assembly into loops that are formed by contacts. For each loop, a symmetrical loop tensor is defined, based on its contact normals. This loop tensor reflects the shape of the loop. An orientation is associated with each loop, based on its loop tensor. At the critical state, the frequencies with which loops with different number of sides occur depend on the coordination number. At the critical state, these loops have, on average, the following universal characteristics, i.e. independent of the coordination number: (1) loops with the same number of sides and orientation have identical anisotropy of the loop tensor, (2) the anisotropy of the loop tensor depends linearly on the number of sides of the loop, (3) the distribution of loop orientations is identical, (4) Lewis’s law for the loop areas, which is a linear relation between the number of sides of loops and their area, is satisfied (not exclusively at the critical state) and (5) the areas of the loops do not depend on their orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur J.R.F., Chua K.S., Dunstan T.: Induced anisotropy in a sand. Géotechnique 27, 13–30 (1977)

    Article  Google Scholar 

  2. Been K., Jefferies M.G.: A state parameter for sands. Géotechnique 35, 99–112 (1985)

    Article  Google Scholar 

  3. Biarez J., Wiendieck K.: La comparison qualitative entre l’anisotropie mécanique et l’anisotropie de structure des milieux pulvérulents. Comptes Rendus de l’Académie des Sciences 256, 1217–1220 (1963)

    Google Scholar 

  4. Behringer, R.P., Geng, J., Howell, D., Longhi, E., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Fluctuations in granular materials. In: Kishino, Y. (ed.) Powders and Grains 2001, pp. 347–354. Swets & Zeitlinger, Lisse (2001)

  5. Calvetti F., Combe G., Lanier J.: Experimental micromechanical analysis of a two-dimensional granular material: relation between structure evolution and loading path. Mech. Cohesive-Frict. Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  6. Casagrande, A.: Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng.; reprinted in Contributions to Soil Mechanics (1925–1940), the Boston Society of Civil Engineers, 1948, pp. 257–276 (1936)

  7. Castro, G.: Liquefaction of Sands. Harvard Soil Mechanics Series, vol. 81, Cambridge, MA, USA (1969)

  8. Castro G., Seed R.B., Keller T.O., Seed H.B.: Steady-state strength analysis of lower San Fernando dam slide. J. Geotech. Eng. 118, 406–427 (1992)

    Article  Google Scholar 

  9. Chang C.S., Hicher P.Y.: An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42, 4258–4277 (2005)

    Article  MATH  Google Scholar 

  10. Chantawarangul, K.: Numerical Simulation of Three-Dimensional Granular Assemblies, Ph.D. Thesis. Department of Civil Engineering, University of Waterloo, Ontario, Canada (1993)

  11. Chiu S.N.: Aboav-Weaire’s and Lewis’s laws—a review. Mater. Charact. 34, 149–165 (1995)

    Article  Google Scholar 

  12. Cundall, P.A., Strack, O.D.L.: The Distinct Element Method as a Tool for Research in Granular Media, Part II. NSF Report ENG76-20711. Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA (1979a)

  13. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 9, 47–65 (1979b)

    Article  Google Scholar 

  14. Dafalias Y.F., Li X.S.: Revisiting the paradigm of critical state soil mechanics: fabric effects. In: Yang, Q., Zhang, J.-M., Zheng, H., Yao, Y. (eds) Constitutive Modelling of Geomaterials: Advances and New Applications, pp. 13–26. Springer, Berlin (2013)

    Chapter  Google Scholar 

  15. Fu P., Dafalias Y.F.: Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int. J. Numer. Anal. Methods Geomech. 35, 1918–1948 (2011)

    Article  Google Scholar 

  16. Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  MathSciNet  Google Scholar 

  17. Gudehus, G.: Psammodynamics: attractors and energetics. In: 9th HSTAM International Congress on Mechanics, Limassol, Cyprus (2010)

  18. Gudehus G.: Physical Soil Mechanics. Springer, Berlin (2011)

    Book  Google Scholar 

  19. Guo N., Zhao J.D.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  20. Herrmann H.J.: Granular media: some new results. Math. Multiscale Mater. IMA Vol. Math. Appl. 99, 109–128 (1998)

    Article  Google Scholar 

  21. Heyman J.: Coulomb’s Memoir on Statics: An Essay in the History of Civil Engineering. Imperial College Press, London (1997)

    Book  Google Scholar 

  22. Horne M.R.: The behaviour of an assembly of rotund, rigid, cohesionless particles, I and II. Proc. R. Soc. Lond. A 286, 62–97 (1965)

    Article  Google Scholar 

  23. Hvorslev, M.J.: Über die Festigkeitseigenschaften gestörter bindiger Böden. (On the physical properties of undisturbed cohesive soils). Danmarks Naturvidenkabelige Samfund, Ingeniorvidenskabelige Skrifter, No. 45, Copenhagen, Denmark; English translation (1969), US Waterways Experiment Station (1937)

  24. Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kolymbas D.: Sand as an archetypical natural solid. In: Kolymbas, D., Viggiani, G. (eds) Mechanics of Natural Solids, Springer, Berlin (2009)

    Chapter  Google Scholar 

  26. Kruyt N.P., Rothenburg L.: Micromechanical definition of the strain tensor for granular materials. J. Appl. Mech. (Trans. ASME) 63, 706–711 (1996)

    Article  MATH  Google Scholar 

  27. Kruyt N.P., Rothenburg L.: Statistics of the elastic behaviour of granular materials. Int. J. Solids Struct. 38, 4879–4899 (2001)

    Article  MATH  Google Scholar 

  28. Kruyt N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40, 511–534 (2003)

    Article  MATH  Google Scholar 

  29. Kruyt N.P., Rothenburg L.: Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech. Mater. 36, 1157–1173 (2004)

    Article  Google Scholar 

  30. Kruyt, N.P., Rothenburg, L.: Plasticity of granular materials: a structural-mechanics view Powders & Grains 2009. In: Nakagawa, M., Luding, S. (eds) AIP Conference Proceedings vol. 1145, pp. 1073–1076 (2009)

  31. Kruyt N.P.: Micromechanical study of plasticity of granular materials. Comptes Rendus Mécanique 338, 596–603 (2010)

    Article  MATH  Google Scholar 

  32. Kruyt N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012)

    Article  Google Scholar 

  33. Kuhn M.R.: Structured deformation in granular materials. Mech. Mater. 31, 407–429 (1999)

    Article  Google Scholar 

  34. Kuhn M.R.: Micro-mechanics of fabric and failure in granular materials. Mech. Mater. 42, 827–840 (2010)

    Article  Google Scholar 

  35. Landau L.D., Lifshitz E.M.: Statistical Physics, Course of Theoretical Physics, vol. 9. Pergamon Press, London (1980)

    Google Scholar 

  36. Lewis E.T.: The correlation between cell division and the shapes and sizes of prismatic cell in the epidermis of Cucumis. Anat. Rec. 38, 341–376 (1928)

    Article  Google Scholar 

  37. Li X.S., Dafalias Y.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138, 263–275 (2012)

    Article  Google Scholar 

  38. Majmudar T.S., Behringer R.P.: Contact force measurement and stress-induced anisotropy in granular material. Nature 435, 1079–1082 (2005)

    Article  Google Scholar 

  39. Mašín D.: Asymptotic behaviour of granular materials. Granul. Matter 14, 759–774 (2012)

    Article  Google Scholar 

  40. Muir Wood D.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  41. Nguyen N.S., Magoariec H., Cambou B., Danescu A.: Analysis of structure and strain at the meso-scale in two-dimensional granular materials. Int. J. Solids Struct. 46, 3257–3271 (2009)

    Article  MATH  Google Scholar 

  42. Nguyen N.S., Magoariec H., Cambou B.: Local stress analysis in granular materials at a meso-scale. Int. J. Numer. Anal. Methods Geomech. 36, 1609–1635 (2012)

    Article  Google Scholar 

  43. Nicot F., Darve F.: A multi-scale approach to granular materials. Mech. Mater. 37, 980–1006 (2005)

    Google Scholar 

  44. Nicot F., Darve F.: The H-microdirectional model: accounting for a mesoscopic scale. Mech. Mater. 43, 918–929 (2011)

    Article  Google Scholar 

  45. Oda M.: The mechanism of fabric change during compressional deformation of sand. Soils Found. 12, 1–18 (1972)

    Article  Google Scholar 

  46. Oda M.: Initial fabric and their relation to mechanical properties of granular material. Soils Found. 12, 19–36 (1972)

    Google Scholar 

  47. Oda M.: Deformation mechanism of sand in triaxial compression tests. Soils Found. 12, 45–63 (1972)

    Article  Google Scholar 

  48. Oda M., Konishi J.: Microscopic deformation mechanism of granular materials in simple shear. Soils Found. 14, 25–38 (1974)

    Article  Google Scholar 

  49. Oda M., Konishi J., Nemat-Nasser S.: Some experimentally-based fundamental results on the mechanical behaviour of granular materials. Géotechnique 30, 479–495 (1980)

    Article  Google Scholar 

  50. Pena A.A., Herrmann H.J., Lizcano A., Alonso-Marroquin F.: Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, pp. 697–700. Taylor & Francis, London (2005)

    Google Scholar 

  51. Poulos S.J.: The steady state of deformation. J. Geotech. Eng. Div. 107, 553–562 (1981)

    Google Scholar 

  52. Roscoe K.H., Schofield A.N., Wroth C.P.: On the yielding of soils. Géotechnique 8, 22–53 (1958)

    Article  Google Scholar 

  53. Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 601–614 (1989)

    Article  Google Scholar 

  54. Rothenburg, L., Bathurst, R.J., Dusseault, M. :Micromechanical ideas in constitutive modelling of granular materials. In: Biarez, J., Gouvrès, R. (eds.) Powders and Grains, International Conference on Micromechanics of Granular Media, Powders and Grains, pp. 355–363. Clermont-Ferrand, France (1989)

  55. Rothenburg L., Kruyt N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Article  MATH  Google Scholar 

  56. Satake M.: Constitution of mechanics of granular materials through graph theory. In: Cowin, S.C., Satake, M. (eds) US-Japan Seminar on Continuum-Mechanical and Statistical Approaches to Granular Materials, pp. 47–62. Elsevier, Amsterdam (1978)

    Google Scholar 

  57. Schofield A.N., Wroth C.P.: Critical State Soil Mechanics. McGraw-Hill, New York, NY (1968)

    Google Scholar 

  58. Terzaghi, K.: The shear resistance of saturated soils. In: Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, pp. 54–56. Cambridge, MA (1936)

  59. Thornton C., Barnes D.J.: Computer simulated deformation of compact granular materials. Acta Mech. 64, 45–61 (1986)

    Article  Google Scholar 

  60. Thornton C., Antony S.J.: Quasi-static deformation of particulate media. Philos. Trans. R Soc. Lond. A 356, 2763–2782 (1998)

    Article  MATH  Google Scholar 

  61. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50, 43–53 (2000)

    Article  Google Scholar 

  62. Thornton C., Zhang L.: On the evolution of stress and unique critical state characteristics in granular media microstructure during general three-dimensional deviatoric straining of granular media. Géotechnique 60, 333–341 (2010)

    Article  Google Scholar 

  63. Tordesillas A., Lin Q., Zhang J., Behringer R.P., Shi J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265–296 (2011)

    Article  MATH  Google Scholar 

  64. Tordesillas A., Walker D.M., Froyland G., Zhang J., Behringer R.P.: Transition dynamics and magic-number-like behaviour of frictional granular clusters. Phys. Rev. E 86, 011306 (2012)

    Article  Google Scholar 

  65. Troadec H., Radjaï F., Roux S., Charmet J.C.: Model for granular texture with steric exclusion. Phys. Rev. E 66, 041305 (2002)

    Article  Google Scholar 

  66. Tsuchikura T., Satake M.: A consideration on the statistical analysis of particle packing using loop tensors. In: Kishino, Y. (eds) Powders and Grains 2001, pp. 29–32. Swets & Zeitlinger, Lisse (2001)

    Google Scholar 

  67. Verdugo R., Ishihara K.: The steady state of sandy soils. Soils Found. 36, 81–92 (1996)

    Article  Google Scholar 

  68. Wang Z.-L., Dafalias Y.F., Shen C.-K.: Bounding surface hypoplasticity model for sand. J. Eng. Mech. 116, 983–1001 (1990)

    Article  Google Scholar 

  69. Zhao J.D., Guo N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63, 695–704 (2013)

    Article  MathSciNet  Google Scholar 

  70. Zhu H., Mehrabadi M.M., Massoudi M.: Incorporating the effects of fabric in the dilatant double shearing model for planar deformation of granular materials. Int. J. Plast. 22, 628–653 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Kruyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruyt, N.P., Rothenburg, L. On micromechanical characteristics of the critical state of two-dimensional granular materials. Acta Mech 225, 2301–2318 (2014). https://doi.org/10.1007/s00707-014-1128-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1128-y

Keywords

Navigation